

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 26 D-32758 Detmold Germany

www.weidmueller.com

Produktbild

Stiftleisten aus glasfaserverstärktem Kunststoff mit 90° Abgangsrichtung optimiert für den Wellenlötprozess. Die Variante mit Flansch (F) lässt sich zur Verschraubung mit dem jeweiligen Gegenstück oder der Leiterplatte nutzen. Beim Einsatz der Lötflansch-Variante (LF) entfällt eine zusätzliche Verschraubung mit der Leiterplatte. Gleichzeitig werden hierbei die Lötstellen vor mechanischem Stress geschützt. Die Stiftleisten können manuell kodiert oder bereits vorkodiert bestellt werden. HC = High Current.

Allgemeine Bestelldaten

Ausführung	Leiterplattensteckverbinder, Stiftleiste,
	Schwalbenschwänze für Befestigungsblöcke,
	THT-Lötanschluss, 5.08 mm, Polzahl: 3, 90°,
	Lötstiftlänge (I): 3.2 mm, blau, Box
BestNr.	<u>1747410000</u>
Тур	SL 5.08HC/03/90B 3.2SN BL BX
GTIN (EAN)	4050118368819
VPE	100 Stück
Produkt-Kennzahlen	IEC: 400 V / 18 A
	UL: 300 V / 15 A
Verpackung	Box

Erstellungs-Datum 2. April 2021 17:33:56 MESZ

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 26 D-32758 Detmold Germany

www.weidmueller.com

Technische Daten

Abmessungen und Gewichte

Breite	17,24 mm	Breite (inch)	0,679 inch
Höhe	11,6 mm	Höhe (inch)	0,457 inch
Höhe niedrigstbauend	8,4 mm	Nettogewicht	1,151 g
Tiefe	12 mm	Tiefe (inch)	0,472 inch

Systemkennwerte

Produktfamilie	OMNIMATE Signal - Serie	Anschlussart	
	BL/SL 5.08		Platinenanschluss
Montage auf der Leiterplatte	THT-Lötanschluss	Raster in mm (P)	5,08 mm
Raster in Zoll (P)	0,2 inch	Abgangswinkel	90°
Polzahl	3	Anzahl Lötstifte pro Pol	1
Lötstiftlänge (I)	3,2 mm	Lötstiftlänge-Toleranz	+0,1 / -0,3 mm
Lötstift-Abmessungen	d = 1,2 mm, oktogonal	Lötstift-Abmessungen=d Toleranz	0 / -0,03 mm
Bestückungsloch-Durchmesser (D)		Bestückungsloch-Durchmesser Toleranz	2
	1,3 mm	(D)	+ 0,1 mm
L1 in mm	10,16 mm	L1 in Zoll	0,4 inch
Polreihenzahl		Berührungsschutz nach DIN VDE 57	
	1	106	fingersicher gesteckt
Berührungsschutz nach DIN VDE 0470	IP 20 gesteckt	Durchgangswiderstand	≤5 mΩ
Kodierbar	Ja		

Werkstoffdaten

Isolierstoff	PBT	Farbe	blau
Farbtabelle (ähnlich)	RAL 5012	Isolierstoffgruppe	Illa
Kriechstromfestigkeit (CTI)	≥ 200	Brennbarkeitsklasse nach UL 94	V-0
Kontaktmaterial	C.,C.,	Schichtaufbau - Lötanschluss	13 μm Ni / 24 μm Sn
	CuSn		matt
Schichtaufbau - Steckkontakt	13 µm Ni / 24 µm Sn	Lagertemperatur, min.	
	matt		-40 °C
Lagertemperatur, max.	70 °C	Betriebstemperatur, min.	-50 °C
Betriebstemperatur, max.	100 °C	Temperaturbereich Montage, min.	-25 °C
Temperaturbereich Montage, max.	100 °C		

Bemessungsdaten nach IEC

geprüft nach Norm		Bemessungsstrom, min. Polzahl	
	IEC 60664-1, IEC 61984	(Tu=20°C)	18 A
Bemessungsstrom, max. Polzahl		Bemessungsstrom, min. Polzahl	
(Tu=20°C)	14,5 A	(Tu=40°C)	15 A
Bemessungsstrom, max. Polzahl (Tu=40°C)		Bemessungsspannung bei Überspannungsk./Verschmutzungsgrad	
	12 A	II/2	400 V
Bemessungsspannung bei Überspannungsk./Verschmutzungsgrad		Bemessungsspannung bei Überspannungsk./Verschmutzungsgrad	
III/2	320 V	III/3	250 V
Bemessungsstoßspannung bei Überspannungsk./Verschmutzungsgrad		Bemessungsstoßspannung bei Überspannungsk./Verschmutzungsgrad	
II/2	4 kV	III/2	4 kV
Bemessungsstoßspannung bei Überspannungsk./Verschmutzungsgrad		Kurzzeitstromfestigkeit	
III/3	4 kV		3 x 1s mit 120 A

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 26 D-32758 Detmold Germany

www.weidmueller.com

Technische Daten

Nenndaten nach CSA	Ne	nnd	aten	nach	CSA
--------------------	----	-----	------	------	-----

Nennspannung (Use group B / CSA)	300 V	Nennspannung (Use group D / CSA)	300 V
Nennstrom (Use group B / CSA)	15 A	Nennstrom (Use group D / CSA)	10 A

Nenndaten nach UL 1059

Institut (cURus)

Zertifikat-Nr. (cURus)

Nennspannung (Use group B / UL
1059)
300 V

Nennstrom (Use group B / UL 1059)
15 A

Hinweis zu den Zulassungswerten
Angaben sind
Maximalwerte, Details

siehe Zulassungs-Zertifikat. E60693

Nennspannung (Use group D / UL
1059)

300 V

Nennstrom (Use group D / UL 1059)

10 A

Verpackungen

Verpackung	Box	VPE Länge	0
VPE Breite	0	VPE Höhe	0

Klassifikationen

ETIM 6.0	EC002637	ETIM 7.0	EC002637
ECLASS 9.0	27-44-04-02	ECLASS 9.1	27-44-04-02
ECLASS 10.0	27-44-04-02	ECLASS 11.0	27-46-02-01

Wichtiger Hinweis

IDC Kamfaunsität	Kanfarmititte Die Dradukte warden nach international analysamten Standards und Narras antwickleit nafartist
IPC-Konformität	Konformität: Die Produkte werden nach international anerkannten Standards und Normen entwickelt, gefertigt
	und ausgeliefert und entsprechen den zugesicherten Eigenschaften im Datenblatt bzw. erfüllen dekorative
	Eigenschaften in Anlehnung der IPC-A-610 "Class2". Darüber hinaus gehende Ansprüche an die Produkte
	können auf Anfrage bewertet werden.
Hinweise	 Langzeitlagerung des Produkts mit einer durchschnittlichen Temperatur von 50 °C und einer
	durchschnittlichen Luftfeuchtigkeit von 70% 36 Monate

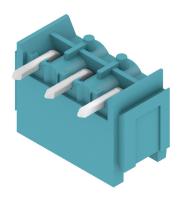
Zulassungen

Zulassungen	and the contract of the contra	
		I/FMA
		N = :::
	C TATAL IIC	INEUR
	U # 100 US	

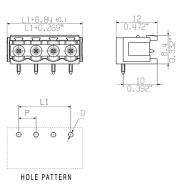
ROHS	Konform
UL File Number Search	E60693

Downloads

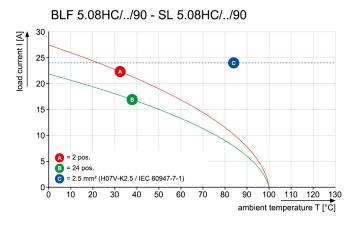
Produktänderungsmitteilung	EN - Change of packaging
	DE - Change of packaging

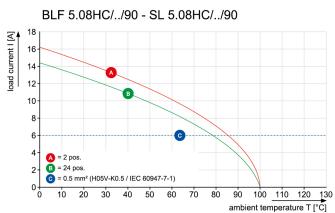

Weidmüller Interface GmbH & Co. KG

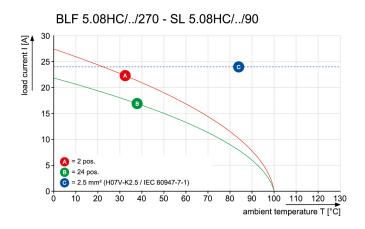
Klingenbergstraße 26 D-32758 Detmold Germany

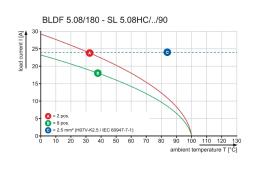

www.weidmueller.com

Zeichnungen


Produktbild

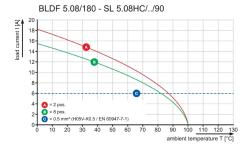

Maßbild


Diagramm


Diagramm

Diagramm

Diagramm


Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 26 D-32758 Detmold Germany

www.weidmueller.com

Zeichnungen

Diagramm

Empfohlene Wellen-Lötprofile

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 16 D-32758 Detmold Germany

Fon: +49 5231 14-0 Fax: +49 5231 14-292083 www.weidmueller.com

Einzelwelle:

Doppelwelle:

Wellen-Lötprofile

Bedrahtete Anschlusselemente sind in Anlehnung an die Norm DIN EN 61760-1 zu verarbeiten. Anbei zwei Empfehlungen für praxisbezoge Wellenlötprofile, mit denen Leiterplattenanschlussklemmen und Steckverbinder von Weidmüller qualifiziert sind.

Bei der Wahl eines passenden Profils für Ihre Anwendung sind unteranderem folgende Faktoren zu beachten:

- Stärke der Leiterplatte
- Cu-Anteile in den Lagen
- Ein-/Beidseitige Bestückung
- Produktspektrum
- Aufheiz- und Abkühlrate

Die Einzel- und Doppelwelle zeigt jeweils den empfohlenen Verarbeitungsbereich inkl. der maximalen Löttemperatur von 260°C. In der Praxis liegt die maximale Löttemperatur sehr häufig weit unter dem o.g. Maximalprofil.