

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 26 D-32758 Detmold Germany

www.weidmueller.com

OMNIMATE Power BV / SV 7.62HP Hybrid – für Energie, Signale & EMV

Drei auf einen Streich!

Mit dem Steckverbinder OMNIMATE Power Hybrid haben Entwickler und Anwender die ideale 3-in-1-Lösung in der Hand.

Der hybride Motor-Steckverbinder verbindet gleichzeitig Energie, Signale plus steckbare EMV-Schirmauflage und spart so Platz auf der Leiterplatte, an der Gehäuse-Außenseite und im Schaltschrank. Die selbstverrastende Einhand-Verriegelung reduziert die Installations- und Wartungszeit durch einen einzigen Steckvorgang. Sie ist auch bei schwierigen Einbauverhältnissen leicht zu bedienen und automatisch sicher verriegelt. Die Schirmblechgeometrie verringert durch eine schlanke 30 Grad-Leitungsführung den Platzbedarf zwischen den Reihen um bis zu 10 cm.

Allgemeine Bestelldaten

Ausführung	Leiterplattensteckverbinder, Stiftleiste, seitlich geschlossen, Mittelflansch, THT/THR- Lötanschluss, 7.62 mm, Polzahl: 4, Lötstiftlänge (I):
BestNr.	2.6 mm, verzinnt, schwarz, Box 2529450000
Тур	SV-SMT 7.62HP/04/270MF4 SC/4 2.6SN BX
GTIN (EAN)	4050118539721
VPE	36 Stück
Produkt-Kennzahlen	IEC: 1000 V / 41 A UL: 300 V / 33 A
Verpackung	Вох

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 26 D-32758 Detmold Germany

www.weidmueller.com

Technische Daten

Abmessungen und Gewichte

Höhe niedrigstbauend	11,4 mm	Nettogewicht	11,889 g
Tiefe	28,3 mm	Tiefe (inch)	1,114 inch

Systemkennwerte

Produktfamilie	OMNIMATE Power - Serie BV/SV 7.62HP	Anschlussart	Platinenanschluss
Montage auf der Leiterplatte	THT/THR-Lötanschluss	Raster in mm (P)	7,62 mm
Raster in Zoll (P)	0,3 inch	Polzahl	4
Anzahl Lötstifte pro Pol	2	Lötstiftlänge (I)	2,6 mm
Lötstift-Abmessungen	0,8 x 1,0 mm	Bestückungsloch-Durchmesser (D)	1,4 mm
Bestückungsloch-Durchmesser Tolerar	nz	L1 in mm	
(D)	+ 0,1 mm		30,48 mm
L1 in Zoll	1,2 inch	Polreihenzahl	1
Berührungsschutz nach DIN VDE 57	handrückensicher	Berührungsschutz nach DIN VDE 0470	ID 00
106	oberhalb der Leiterplatte	·	IP 20
Durchgangswiderstand	2,00 mΩ	Kodierbar	Ja
Steckzyklen	25	Steckkraft/Pol, max.	12 N
Ziehkraft/Pol, max.	7 N		

Werkstoffdaten

Isolierstoff	PA GF HT3	Farbe	schwarz
Farbtabelle (ähnlich)	RAL 9011	Isolierstoffgruppe	I
Kriechstromfestigkeit (CTI)	≥ 600	Moisture Level (MSL)	3
Brennbarkeitsklasse nach UL 94	V-0	Kontaktmaterial	Cu-Leg
Kontaktoberfläche		Schichtaufbau - Lötanschluss	13 μm Ni / 46 μm Sn
	verzinnt		matt
Schichtaufbau - Steckkontakt	13 μm Ni / 46 μm Sn	Lagertemperatur, min.	
	matt		-40 °C
Lagertemperatur, max.	70 °C	Betriebstemperatur, min.	-50 °C
Betriebstemperatur, max.	130 °C	Temperaturbereich Montage, min.	-25 °C
Temperaturbereich Montage, max.	130 °C		

Bemessungsdaten nach IEC

geprüft nach Norm		Bemessungsstrom, min. Polzahl			
-	IEC 60664-1, IEC 61984	(Tu=20°C)	41 A		
Bemessungsstrom, max. Polzahl		Bemessungsstrom, min. Polzahl			
(Tu=20°C)	41 A	(Tu=40°C)	41 A		
Bemessungsstrom, max. Polzahl		Bemessungsspannung bei			
(Tu=40°C)		Überspannungsk./Verschmutzungsg	grad		
	41 A	II/2	1.000 V		
Bemessungsspannung bei		Bemessungsspannung bei			
Überspannungsk./Verschmutzungsg	rad	Überspannungsk./Verschmutzungsg	grad		
III/2	630 V	III/3	630 V		
Bemessungsstoßspannung bei		Bemessungsstoßspannung bei			
Überspannungsk./Verschmutzungsg	rad	Überspannungsk./Verschmutzungsg	grad		
II/2	6 kV	III/2	6 kV		
Bemessungsstoßspannung bei		Kurzzeitstromfestigkeit			
Überspannungsk./Verschmutzungsg	rad	-			
III/3	6 kV		3 x 1s mit 420 A		

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 26 D-32758 Detmold Germany

www.weidmueller.com

Technische Daten

Nenndaten nach UL 1059

Nennspannung (Use group B / UL		Nennspannung (Use ç	aroun C / III	
1059)	300 V 1059]		310up 0 / OL	300 V
Nennspannung (Use group D / UL		Nennstrom (Use grou	p B / UL 1059)	
1059)	600 V		,	33 A
Nennstrom (Use group C / UL 1059)	33 A	Nennstrom (Use grou	p D / UL 1059)	5 A
Kriechstrecke, min.	9,6 mm	Luftstrecke, min.		6,9 mm
Verpackungen				
Verpackung	Box	VPE Länge		0
VPE Breite		VPE Höhe		0
Technische Daten - Hybrid				
Raster in mm (Hybrid)	Hybridanteil	Sig	ınal	
	nominal	3,8	31 mm	
Raster in mm (Signal)	3.81 mm			
Raster in Zoll (Hybrid)	nominal	0,1	5 inch	
	Hybridanteil	Sig	ınal	
Raster in Zoll (Signal)	0.15 inch			
Polzahl (Hybrid)	nominal	4		
			ınal	
Polzahl (Signal)	4			
Anzahl Lötstifte pro Pol (Hybrid)	Hybridanteil Signal		ınal	
	nominal	1	,	
Anzahl Lötstifte pro Pol (Signal)	1			
Lötstift-Abmessungen (Hybrid)	Lötstift-Abmessungen	0.8	3 x 0,8 mm	
	Hybridanteil		ınal	
Lötstift-Abmessungen (Signal)	0,8 x 0,8 mm		,,,,,,,	
Lötstift-Abmessungen=d Toleranz (Hybrid)	Lötstift-Abmessungen=d Toleranz		ntere Toleranz mit orzeichen (ergibt lindestmaß)	-0,03
		V _i	oere Toleranz mit orzeichen (ergibt öchstmaß)	+0,01
			oleranz Einheit	mm
	Hybridanteil	Sig	ınal	
Lötstift-Abmessungen=d Toleranz (Signal)	-0,03 / +0,01 mm			
Bestückungsloch-Durchmesser (Hybrid)	Hybridanteil		ınal	
	nominal	1,3	3 mm	
Bestückungsloch-Durchmesser (Signal)	1.3 mm			
Bestückungsloch-Durchmesser Toleranz	Hybridanteil		Signal	
(Hybrid)	Bestückungsloch-Durchmesse	er Toleranz (D) \pm 0),1 mm	
Bestückungsloch-Durchmesser Toleranz (Signal)	± 0,1 mm			
L2 in mm	3,81 mm			
L2 in Zoll	0,15 inch			
Anzahl Reihen (Hybrid)	Hybridanteil	Sig	ınal	
	Anzahl Reihen	2		
Anzahl Reihen (Signal)	2			
Kontaktmaterial (Hybrid)	Hybridanteil	Sic	ınal	
	Kontaktmaterial	<u>`</u>	Mg	
	1		-	

Kontaktmaterial (Signal)

CuMg

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 26 D-32758 Detmold Germany

www.weidmueller.com

Technische Daten

Kontaktoberfläche (Hybrid)	Hybridanteil	Signal			
	Kontaktoberfläche	verzinnt			
Kontaktoberfläche (Signal)	verzinnt				
Schichtaufbau - Lötanschluss (Hybrid)	Hybridanteil	Signal			
	Schichtaufbau - Lötanschluss	Schichtstärke	min. 1 µ		
			max. 3 μ		
		Werkstoff	Ni		
		Schichtstärke	min. 4 µ		
			max. 8 μ		
		Werkstoff	Sn		
Schichtaufbau - Lötanschluss (Signal)	1-3 μ Ni / 4-8 μ Sn				
Schichtaufbau - Steckkontakt (Hybrid)	Hybridanteil	Signal			
	Schichtaufbau - Steckkontakt	Werkstoff	Ni		
		Schichtstärke	min. 1 μ		
			max. 3 μ		
		Werkstoff	Sn		
		Schichtstärke	min. 4 μ		
			max. 8 µ		
Schichtaufbau - Steckkontakt (Signal)	1-3 μ Ni / 4-8 μ Sn	1			
Bemessungsspannung bei	Hybridanteil	Signal			
Überspannungsk./Verschmutzungsgrad I/2 (Hybrid)	nominal	320 V			
Bemessungsspannung bei Überspannungsk./Verschmutzungsgrad I/2 (Signal)	320 V				
Bemessungsspannung bei	Hybridanteil	Signal			
Jberspannungsk./Verschmutzungsgrad	nominal	160 V			
II/2 (Hybrid) Bemessungsspannung bei Überspannungsk./Verschmutzungsgrad II/2 (Signal)	160 V				
Bemessungsspannung bei	Hybridanteil	Signal			
Überspannungsk./Verschmutzungsgrad II/3 (Hybrid)	nominal	160 V			
Bemessungsspannung bei Überspannungsk./Verschmutzungsgrad II/3 (Signal)	160 V				
Bemessungsstoßspannung bei	Hybridanteil	Signal			
Überspannungsk./Verschmutzungsgrad I/2 (Hybrid)	nominal	2,5 kV			
Remessungsstoßspannung bei Überspannungsk./Verschmutzungsgrad I/2 (Signal)	2.5 kV				
Bemessungsstoßspannung bei	Hybridanteil	Signal			
Überspannungsk./Verschmutzungsgrad	nominal	2,5 kV			
Bemessungsstoßspannung bei Überspannungsk./Verschmutzungsgrad II/2 (Signal)	2.5 kV				
Bemessungsstoßspannung bei	Hybridanteil	Signal			
Überspannungsk./Verschmutzungsgrad II/3 (Hybrid)	nominal	2,5 kV			
Bemessungsstoßspannung bei Überspannungsk./Verschmutzungsgrad II/3 (Signal)	2.5 kV				
(urzzeitstromfestigkeit (Hybrid)	Kurzzeitstromfestigkeit	3 x 1s mit 80 A	<u> </u>		
	Hybridanteil	Signal			
Kurzzeitstromfestigkeit (Signal)	3 x 1s mit 80 A				
Kriechstrecke (Hybrid)	Hybridanteil	Signal			
· · · · ·	,	4,38 mm			

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 26 D-32758 Detmold Germany

www.weidmueller.com

Technische Daten

Luftstrecke (Hybrid)	Hybridanteil	Signal	
	min.	3,6 mm	
Nennspannung (Use group B / CSA)	Hybridanteil	Signal	
(Hybrid)	nominal	300 V	
Nennspannung (Use group B / CSA) Signal)	300 V		
Nennspannung (Use group C / CSA)	Hybridanteil	Signal	
Hybrid)	nominal	50 V	
Nennspannung (Use group C / CSA) Signal)	50 V		
Nennstrom (Use group B / CSA) (Hybrid	l) Hybridanteil	Signal	
	nominal	9 A	
Nennstrom (Use group B / CSA) (Signal) 9 A		
Nennstrom (Use group C / CSA) (Hybrid		Signal	
	nominal	9 A	
Nennstrom (Use group C / CSA) (Signal) 9 A		
Nennstrom (Use group D / CSA)	Hybridanteil	Signal	
Hybrid)	nominal	9 A	
Nennstrom (Use group D / CSA) (Signa) 9 A		
Nennspannung (Use group B / UL	Hybridanteil	Signal	
1059) (Hybrid)	nominal	300 V	
Nennspannung (Use group B / UL 1059) (Signal)	300 V		
Nennspannung (Use group C / UL	Hybridanteil	Signal	
1059) (Hybrid)	nominal	50 V factory wiring	
Nennspannung (Use group C / UL 1059) (Signal)	50 V factory wiring	, 5	
Nennspannung (Use group D / UL	Hybridanteil	Signal	
1059) (Hybrid)	nominal	300 V	
Nennspannung (Use group D / UL 1059) (Signal)	300 V		
Nennstrom (Use group B / UL 1059)	Hybridanteil	Signal	
(Hybrid)	nominal	5 A	
Nennstrom (Use group B / UL 1059) (Signal)	5 A		
Nennstrom (Use group C / UL 1059)	Hybridanteil	Signal	
(Hybrid)	nominal	5 A	
Nennstrom (Use group C / UL 1059) (Signal)	5 A		
Nennstrom (Use group D / UL 1059) (Hybrid)	Hybridanteil	Signal	

Klassifikationen

ETIM 6.0	EC002637	ETIM 7.0	EC002637
ECLASS 9.0	27-44-04-02	ECLASS 9.1	27-44-04-02
ECLASS 10.0	27-44-04-02	ECLASS 11.0	27-46-02-01

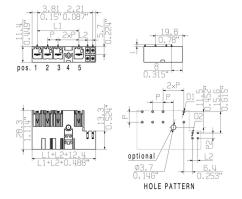
Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 26 D-32758 Detmold Germany

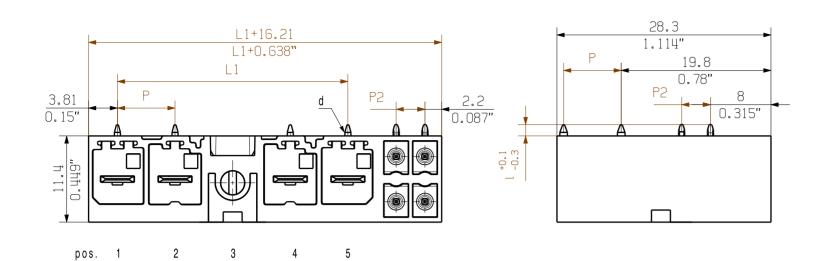
www.weidmueller.com

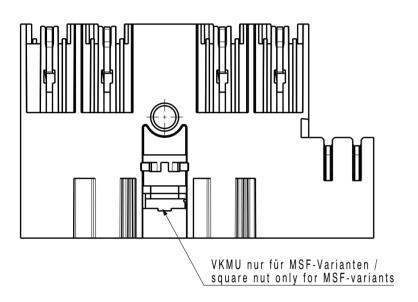
Technische Daten

Wichtiger Hinweis	
IPC-Konformität	Konformität: Die Produkte werden nach international anerkannten Standards und Normen entwickelt, gefertigt und ausgeliefert und entsprechen den zugesicherten Eigenschaften im Datenblatt bzw. erfüllen dekorative Eigenschaften in Anlehnung der IPC-A-610 "Class2". Darüber hinaus gehende Ansprüche an die Produkte können auf Anfrage bewertet werden.
Hinweise	Technische Daten beziehen sich auf die Leistungskontakte
	Technische Daten Signalkontake: 50V / 5A, Abisolierlänge 8mm
	Bemessungsstrom bezogen auf Bemessungsquerschnitt und min. Polzahl
	• Zeichnungsangabe: P1=7,62 mm; P2=3,81 mm
	 Bemessungsdaten sind bezogen auf das jeweilige Bauteil. Luft- und Kriechstrecken zu anderen Bauteilen sind entsprechend der jeweils relevanten Anwendungsnormen zu gestalten.
	• MFX und MSFX: X= Position des Mittelflansch z.B. MF2, MSF3
	 Langzeitlagerung des Produkts mit einer durchschnittlichen Temperatur von 50 °C und einer durchschnittlichen Luftfeuchtigkeit von 70%, 36 Monate
Downloads	
Engineering-Daten	<u>STEP</u>

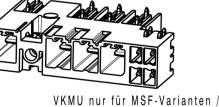

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 26 D-32758 Detmold Germany

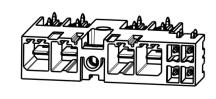

www.weidmueller.com


Zeichnungen

Maßbild


SV-SMT 7.62HP/04/270M(S)F...SC04

<u>1:1</u>



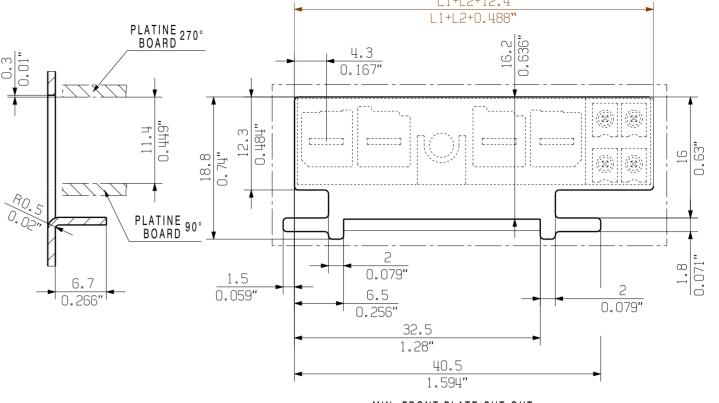
SV-SMT 7.62HP/04/270MSF2 SC04

square nut only for MSF-variants

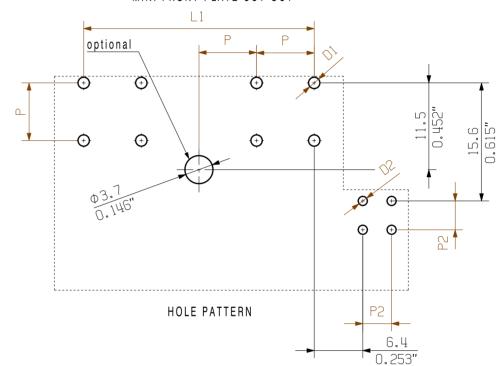
SV-SMT 7.62HP/04/270MF3 SC04

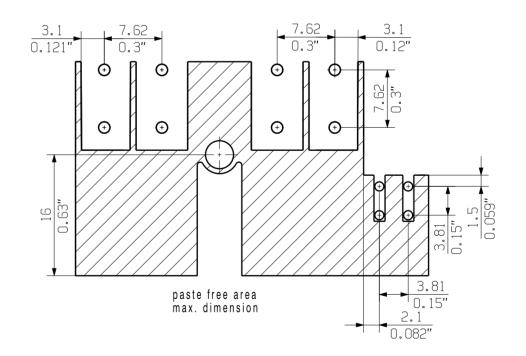
SV-SMT 7.62HP/04/270MSF3 SC04

VKMU nur für MSF-Varianten / square nut only for MSF-variants


VKMU nur für MSF-Varianten /

square nut only for MSF-variants


SV-SMT 7.62HP/04/270MF4 SC04



SV-SMT_7.62HP/04/270MSF4 SC04

MIN. FRONT PLATE CUT-OUT

 $D1 = \emptyset 1.4 + 0.1/-0.05$ $D2 = \emptyset 1.2 + 0.1/-0.05$ d = 0.8x1.0

P = Raster/pitch 7.62P2 = Raster/pitch 3.81

 $MF = \frac{Mittelflansch}{middle}$ MSF = Mittelschraubflansch middle flange with screw

For the mounting of PCBs, it should be noted that the rated data relates only to the PCB components

The neccessary creepage and clearance paths must be observed in connection with the respective applicant in accordance to IEC 664 / VDE 0110. The current-carrying capacity and pitch tolerance is to be determined according to DIN IEC 326 part 3 very fine.

Weidmüller PCB components are tested to the DIN EN 61984 standard, and are valid for its field of application. Provided that the components are used to the intended purpose, all requirements with respect to the

	1.5
	2.6
	3.5
GENERAL TOLERANCE:	I
DIN ISO 2768-m	[mm]

Responsible

EC00002212

05 M(S)F 4	38.1	1.495	POL	POL	POL	M(S)F	POL	POL
05 M(S)F 3	38.1	1.495	POL	POL	M(S)F	POL	POL	POL
04 M(S)F 4	30.48	1.196	POL	POL	POL	M(S)F	POL	
04 M(S)F 3	30.48	1.196	POL	POL	M(S)F	POL	POL	
03 M(S)F 3	22.86	0.897	POL	POL	M(S)F	POL		
03 M(S)F 2	22.86	0.897	POL	M(S)F	POL	POL		
02 M(S)F 2	15.24	0.598	POL	M(S)F	POL			
no of	L1	L1	1	2	3	4	5	6
poles	[mm]	[inch]			POSI	TION		

Prim PLM Part No.: 225880 Prim ERP Part No.: 2499550000 Max. nos. Weidmüller First Issue Date Modification 14.11.2016 Date Name

30.08.2019 | Helis, Maria

Döhrer, Karl

SV-SMT 7.62HP/IT/../90/270... MALE HEADER

Drawing no.

Sheet 17 of 17 sheets

Size: A2 Approved 09.10.2019 Lang, Thomas Product file: 7407 BLF 7.50HP

Scale: 2:1 Drawings Assembly

occuring of electrical, mechanical, thermic and corrosive stress will be satisfied.

Empfohlene Wellen-Lötprofile

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 16 D-32758 Detmold Germany

Fon: +49 5231 14-0 Fax: +49 5231 14-292083 www.weidmueller.com

Einzelwelle:

Doppelwelle:

Wellen-Lötprofile

Bedrahtete Anschlusselemente sind in Anlehnung an die Norm DIN EN 61760-1 zu verarbeiten. Anbei zwei Empfehlungen für praxisbezoge Wellenlötprofile, mit denen Leiterplattenanschlussklemmen und Steckverbinder von Weidmüller qualifiziert sind.

Bei der Wahl eines passenden Profils für Ihre Anwendung sind unteranderem folgende Faktoren zu beachten:

- Stärke der Leiterplatte
- Cu-Anteile in den Lagen
- Ein-/Beidseitige Bestückung
- Produktspektrum
- Aufheiz- und Abkühlrate

Die Einzel- und Doppelwelle zeigt jeweils den empfohlenen Verarbeitungsbereich inkl. der maximalen Löttemperatur von 260°C. In der Praxis liegt die maximale Löttemperatur sehr häufig weit unter dem o.g. Maximalprofil.

Empfohlenes Reflow-Lötprofil

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 16 D-32758 Detmold Germany

Fon: +49 5231 14-0 Fax: +49 5231 14-292083 www.weidmueller.com

Reflow Lötprofil

Das ideale Temperaturprofil für die Surface Mount Technology (SMT) ist eine häufig gestellte Frage in der Produktionswelt. Eine eindeutige Antwort gibt es nicht. Der Temperatur-Zeit-Verlauf ist abhängig von den Verarbeitungseigenschaften der Lotpaste und den Belastungsgrenzen der Bauelemente.

Folgende Parameter sind zu berücksichtigen:

- Vorheizzeit
- Maximale Temperatur
- Zeit oberhalb des Pasten-Schmelzpunktes
- Abkühlzeit
- maximaler Aufheizgradient
- minimaler Abkühlgradient

Das von uns empfohlene Lötprofil beschreibt den typischen Verlauf sowie die Prozessgrenzen. In der Vorheizphase werden Platine und Bauelemente schonend vorgeheizt. Der Aufheizgradient beträgt ≤ +3 K/s. Parallel dazu wird die Lotpaste 'aktiviert'. In der Zeit oberhalb der Schmelztemperatur 217 °C wird das Lot flüssig, verbindet die Bauelemente mit den Anschlüsse auf der Platine. Dabei wird die maximale Temperatur von 245 °C bis 254 °C zwischen 10 und 40 Sekunden gehalten. In der Abkühlzeit bei ≥ -6 K/s härtet das Lot aus. Platine und Bauelemente werden nicht zu rasch abgekühlt, um Spannungsrisse zu vermeiden.