

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 26 D-32758 Detmold Germany

www.weidmueller.com

OMNIMATE Power BV / SV 7.62HP Hybrid – для энергии, сигналов и ЭМС

Три в одном!

Благодаря соединительному разъему OMNIMATE Power Hybrid разработчики и пользователи получают идеальное решение "3 в 1".

Гибридный соединительный разъем для электродвигателей одновременно сочетает в себе энергию, сигналы плюс вставную экранирующую накладку ЭМС и таким образом экономит место на печатной плате, на наружной стороне корпуса и в распределительном шкафу. Самофиксирующаяся блокировка для управления одной рукой сокращает время монтажа и обслуживания – вставку необходимо выполнять всего один раз. Она легка в обращении и надежно автоматически блокируется даже в трудных монтажных условиях. Геометрия экранирующей пластины благодаря узкому вводу проводов под углом 30 градусов снижает потребность в площади между рядами до 10 см.

Основные данные для заказа

Исполнение	Штекерный соединитель печатной платы, Штырьковый соединитель, с боковой стороны закрыто, Центральный фланец, Соединение ТНТ/ТНR под пайку, 7.62 mm, Количество полюсов: 4, Длина контактного штифта (I): 2.6 mm, луженые, черный, Ящик
Номер для заказа	2529450000
Тип	SV-SMT 7.62HP/04/270MF4 SC/4 2.6SN BX
GTIN (EAN)	4050118539721
Кол.	36 Шт.
Продуктное отношение	IEC: 1000 V / 41 A UL: 300 V / 33 A
Упаковка	Ящик

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 26 D-32758 Detmold Germany

www.weidmueller.com

Технические данные

Размеры и массы

			28,3 мм
1,114 inch	Масса нетто		11,889 g
Яшик	Ллина VPF		0
	• • • • • • • • • • • • • • • • • • • •		0
· гибридная плата Т	ехнические да	нные	
F. 6		C:	
		3,8 I MM	
•		Signal	
0.15 inch			
номин.		4	
Гибридный компонент		Signal	
4			
Гибридный компонент		Signal	
номин.		1	
1			
Гибридный компонент		Signal	
Размеры выводов под пай	йку	0,8 x 0,8 mm	
0,8 x 0,8 mm			
d Размеры выводов под пайку = допуск d		Нижний допуск с префиксом (показывает минимум)	-0,03
		Верхний допуск с префиксом (показывает максимум)	+0,01
		Допуск, единица	mm
Гибридный компонент		Signal	
I-0,03 / +0,01 mm			
Гибридный компонент		Signal	
номин.		1,3 мм	
1.3 mm			
Гибридный компонент		Signal	
	ажного отверстия ([D) ±0,1 мм	
±0,1 мм		•	
3,81 мм			
0,15 inch			
Гибридный компонент	<u> </u>	Signal	<u> </u>
Количество рядов		2	
Количество рядов			
Количество рядов 2			
1 "		Signal	
	Гибридный компонент номин. 3.81 mm номин. Гибридный компонент 0.15 inch номин. Гибридный компонент 4 Гибридный компонент номин. 1 Гибридный компонент Размеры выводов под паі 0,8 х 0,8 mm Размеры выводов под паі гибридный компонент номин. 1.3 mm Гибридный компонент номин. 1.3 mm Гибридный компонент допуск на диаметр монта ±0,1 мм 3,81 мм 0,15 inch	Ящик Длина VPE Высота VPE гибридная плата Технические да Гибридный компонент номин. Гибридный компонент О.15 inch номин. Гибридный компонент номин. Гибридный компонент номин. 1 Гибридный компонент Размеры выводов под пайку О,8 х О,8 mm Размеры выводов под пайку = допуск d Гибридный компонент номин. 1.3 mm Гибридный компонент Допуск на диаметр монтажного отверстия (I ±0,1 мм 3,81 мм О,15 inch	Ящик Длина VPE Высота VPE Гибридная плата Технические данные Гибридный компонент номин. 3,81 мм 3.81 mm 0,15 inch Гибридный компонент убридный компонент номин. 4 Гибридный компонент номин. 4 Гибридный компонент номин. 5 ignal 1 1 Гибридный компонент номин. 1 Размеры выводов под пайку дамеры дамеры выводов под пайку дамеры дамеры выводов под пайку дамеры

Дата создания 11 апреля 2021 г. 12:36:50 CEST

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 26 D-32758 Detmold Germany

www.weidmueller.com

Технические данные

Поверхность контакта (гибридн.)	Гибридный компонент	Signal		
	Поверхность контакта	луженые		
Поверхность контакта (сигнал)	луженые			
Структура слоев соединения под пайку	Гибридный компонент	Signal		
(гибридн.)	Структура слоев соединения под пайку	Прочность слоя	мин. 1μ	
			макс. 3 μ	
		Материал	Ni	
		Прочность слоя	мин. 4 μ	
			макс. 8 μ	
^	1.1.2 NI: / 4.0 C	Материал	Sn	
Структура слоев соединения под пайку сигнал)	/ 1-3 μ NI / 4-6 μ Sn			
Структура слоев штепсельного	Гибридный компонент	Signal		
контакта (гибридн.)	Структура слоев штепсельного контакта	Прочность слоя	мин. 1μ	
	0.127712		макс. 3 μ	
		Материал	Ni	
		Прочность слоя	мин. 4 μ	
			макс. 8 μ	
		Материал	Sn	
Структура слоев штепсельного контакта (сигнал)	1-3 μ Ni / 4-8 μ Sn			
Номинальное импульсное напряжение	Гибридный компонент	Signal		
иля класса перенапряжения / степень	номин.	320 V		
загрязнения II/2 (гибридн.)	220.1/			
Номинальное напряжение для класса перенапряжения / степени вагрязнения II/2 (сигнал)	320 V			
Номинальное импульсное напряжение	Гибридный компонент	Signal		
для класса перенапряжения / степень загрязнения III/2 (гибридн.)	номин.	160 V		
Номинальное напряжение для класса перенапряжения / степени загрязнения III/2 (сигнал)	160 V			
Номинальное импульсное напряжение	Гибридный компонент	Signal		
для класса перенапряжения / степень загрязнения III/3 (гибридн.)	номин.	160 V		
Номинальное напряжение для класса перенапряжения / степени загрязнения III/3 (сигнал)	160 V			
Номинальное импульсное напряжение	Гибридный компонент	Signal		
иля класса перенапряжения / степень	номин.	2,5 kV		
загрязнения II/2 (гибридн.)	1	2,0 KV		
Номинальное импульсное напряжение для класса перенапряжения / степени вагрязнения II/2 (сигнал)	2.5 kV			
Номинальное импульсное напряжение	Гибридный компонент	Signal		
для класса перенапряжения / степень загрязнения III/2 (гибридн.)	номин.	2,5 kV		
Номинальное импульсное напряжение иля класса перенапряжения / степени загрязнения III/2 (сигнал)	2.5 kV			
Номинальное импульсное напряжение	Гибридный компонент	Signal		
для класса перенапряжения / степень загрязнения III/3 (гибридн.)	номин.	2,5 kV		
Номинальное импульсное напряжение для класса перенапряжения / степени загрязнения III/3 (сигнал)	2.5 kV			
Сратковременная допустимая токовая	Гибридный компонент	Signal		
нагрузка (гибридн.)	Устойчивость к воздействию кратковременного тока	3 х 1 сек. с 80 А		
Сопротивление кратковременно допустимому сквозному току (сигнал)	3 х 1 сек. с 80 А			

Дата создания 11 апреля 2021 г. 12:36:50 CEST

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 26 D-32758 Detmold Germany

www.weidmueller.com

Технические данные

Расстояние утечки (гибридн.)	Гибридный компонент	Signal
т аветенные уто нег (глоридн.)	мин.	4,38 мм
Разделительное расстояние (гибридн.)	Гибридный компонент	Signal
т аодолительное расстолиме (глеридии)	мин.	3,6 мм
Номинальное напряжение (группа	I	
использования B/CSA) (гибридн.)	Гибридный компонент	Signal 300 V
	номин. 300 V	300 V
Номинальное напряжение (группа использования B/CSA) (сигнал)	300 V	
Номинальное напряжение (группа	Гибридный компонент	Signal
использования C/CSA) (гибридн.)	номин.	50 V
Номинальное напряжение (группа использования C/CSA) (сигнал)	50 V	
Номинальный ток (группа	Гибридный компонент	Signal
использования B/CSA) (гибридн.)	номин.	9 A
Номинальный ток (группа использования B/CSA) (сигнал)	9 A	
Номинальный ток (группа	Гибридный компонент	Signal
использования C/CSA) (гибридн.)	номин.	9 A
Номинальный ток (группа использования C/CSA) (сигнал)	9 A	
Номинальный ток (группа	Гибридный компонент	Signal
использования D/CSA) (гибридн.)	номин.	9 A
Номинальный ток (группа использования D/CSA) (сигнал)	9 A	
Номинальное напряжение (группа	Гибридный компонент	Signal
использования B/UL 1059) (гибридн.)	номин.	300 V
Номинальное напряжение (группа использования B/UL 1059) (сигнал)	300 V	
Номинальное напряжение (группа	Гибридный компонент	Signal
использования C/UL 1059) (гибридн.)	номин.	50 V factory wiring
Номинальное напряжение (группа использования C/UL 1059) (сигнал)	50 V factory wiring	, ,
Номинальное напряжение (группа	Гибридный компонент	Signal
использования D/UL 1059) (гибридн.)	номин.	300 V
Номинальное напряжение (группа использования D/UL 1059) (сигнал)	300 V	
Номинальный ток (группа	Гибридный компонент	Signal
использования B/UL 1059) (гибридн.)	номин.	5 A
Номинальный ток (группа использования B/UL 1059) (сигнал)	5 A	
Номинальный ток (группа	Гибридный компонент	Signal
использования C/UL 1059) (гибридн.)	номин.	5 A
Номинальный ток (группа использования C/UL 1059) (сигнал)	5 A	
Номинальный ток (группа использования D/UL 1059) (гибридн.)	Гибридный компонент	Signal

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 26 D-32758 Detmold Germany

www.weidmueller.com

Технические данные

Системные характеристики

Серия изделия	OMNIMATE Power –	Вид соединения	
оврии изделии	серия BV/SV 7.62HP	274 9994	Соединение с платой
Монтаж на печатной плате	Соединение THT/THR под пайку	Шаг в мм (Р)	7,62 мм
Шаг в дюймах (Р)	0,3 inch	Количество полюсов	4
Количество контактных штырьков на		Длина контактного штифта (I)	
полюс	2		2,6 мм
Размеры выводов под пайку	0,8 x 1,0 mm	Диаметр монтажного отверстия (D)	1,4 мм
Допуск на диаметр монтажного			
отверстия (D)	+ 0,1 мм		30,48 мм
L1 в дюймах	1,2 inch	Количество полюсных рядов	1
Защита от прикосновения согласно DIN VDE 57 106	safe to back of hand above the printed circuit board	Защита от прикосновения согласно DIN VDE 0470	IP 20
Объемное сопротивление	2,00 мОм	Кодируемый	Да
Циклы коммутации	25	Усилие вставки на полюс, макс.	12 N
Усилие вытягивания на полюс, макс.	7 N		

Данные о материалах

Изоляционный материал	PA GF HT3	Цветовой код	черный
Таблица цветов (аналогич.)	RAL 9011	Группа изоляционного материала	I
Сравнительный показатель пробоя (CTI)	>= 600	Moisture Level (MSL)	3
Класс пожаростойкости UL 94	V-0	Материал контакта	Медный сплав
Поверхность контакта		Структура слоев соединения под пайку 13 µm Ni / 46 µm Sn	
	луженые		матовый
Структура слоев штепсельного контакта	13 µm Ni / 46 µm Sn матовый	Температура хранения, мин.	-40 °C
Температура хранения, макс.	70 °C	Рабочая температура, мин.	-50 °C
Рабочая температура, макс.	130 °C	Температурный диапазон монтажа, мин.	-25 °C
Температурный диапазон монтажа, макс.	130 °C		

Номинальные характеристики по ІЕС

пройдены испытания по стандарту	IEC 60664-1, IEC 61984	Номинальный ток, мин. кол-во контактов (Tu = 20 °C)	41 A
· · · · · · · · · · · · · · · · · · ·	IEC 00004-1, IEC 01984	,	41A
Номинальный ток, макс. кол-во контактов (Tu = 20 °C)	41 A	Номинальный ток, мин. кол-во контактов (Tu = 40 °C)	41 A
Номинальный ток, макс. кол-во контактов (Tu = 40 °C)		Номинальное импульсное напряжение при категории помехозащищенности/	•
	41 A	Категория загрязнения II/2	1 000 V
Номинальное импульсное напряжение при категории помехозащищенности/		Номинальное импульсное напряжение при категории помехозащищенности/	•
Категория загрязнения III/2	630 V	Категория загрязнения III/3	630 V
Номинальное импульсное напряжение при категории помехозащищенности/		Номинальное импульсное напряжение при категории помехозащищенности/	•
Категория загрязнения II/2	6 kV	Категория загрязнения III/2	6 kV
Номинальное импульсное напряжение		Устойчивость к воздействию	
при категории помехозащищенности		кратковременного тока	
Категория загрязнения III/3	6 kV		3 х 1 сек. с 420 А

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 26 D-32758 Detmold Germany

www.weidmueller.com

Технические данные

Номинальные характеристики по UL 1059

Номинальное напряжение (группа использования B/UL 1059)	300 V	Номинальное напряжение (группа использования C/UL 1059)	300 V
Номинальное напряжение (группа	300 V	Номинальный ток (группа	300 V
использования D/UL 1059)	600 V	использования B/UL 1059)	33 A
Номинальный ток (группа		Номинальный ток (группа	
использования C/UL 1059)	33 A	использования D/UL 1059)	5 A
Разделительное расстояние, мин.	6,9 мм	Расстояние утечки, мин.	9,6 мм

Классификации

ETIM 6.0	EC002637	ETIM 7.0	EC002637
ECLASS 9.0	27-44-04-02	ECLASS 9.1	27-44-04-02
ECLASS 10.0	27-44-04-02	ECLASS 11.0	27-46-02-01

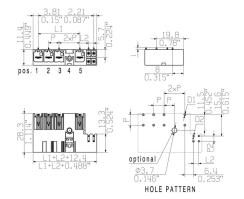
Важное примечание

Соответствие ІРС	Заявление о соответствии: все изделия разрабатываются, производятся и поставляются в соответствии с установленными международными стандартами и нормами и соответствуют характеристикам, указанным в технической документации, а также обладают декоративными свойствами в соответствии с IPC-A-610, "Класс 2". Любые другие запросы информации об изделиях могут быть рассмотрены по запросу.
Примечания	 Технические данные приведены для силовых контактов Технические данные сигнальных контактов 50 В/5 А, длина снятия изоляции 8 мм Номинальный ток указан для номин. сечения и мин. числа контактов. Параметры диаграммы: P1=7,62 мм; P2=3,81 мм Расчетные данные относятся к соответствующему компоненту. Воздушные зазоры и пути утечки к другим компонентам должны быть сформированы согласно соответствующим стандартам, регламентирующим применение. МFX и MSFX: X= положение среднего фланца, например MF2, MSF3

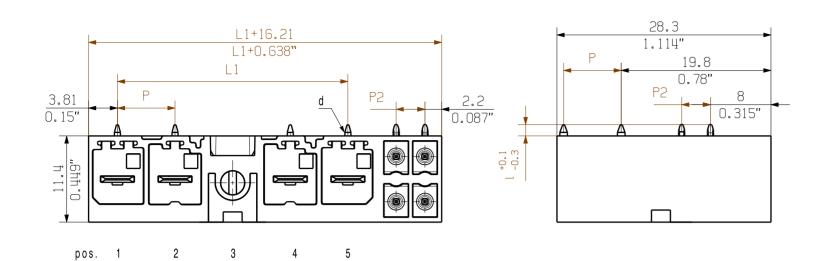
Загрузки

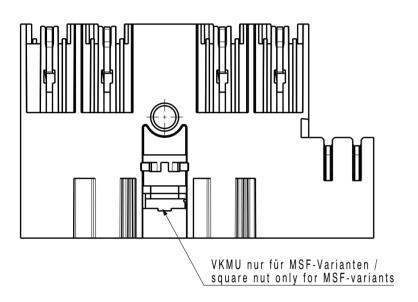
Технические данные	<u>STEP</u>

• Длительное хранение продукта при средней температуре 50 °C и средней влажности 70%, 36 месяцев

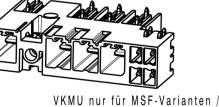

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 26 D-32758 Detmold Germany

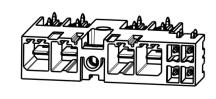

www.weidmueller.com


Изображения

Dimensional drawing


SV-SMT 7.62HP/04/270M(S)F...SC04

<u>1:1</u>



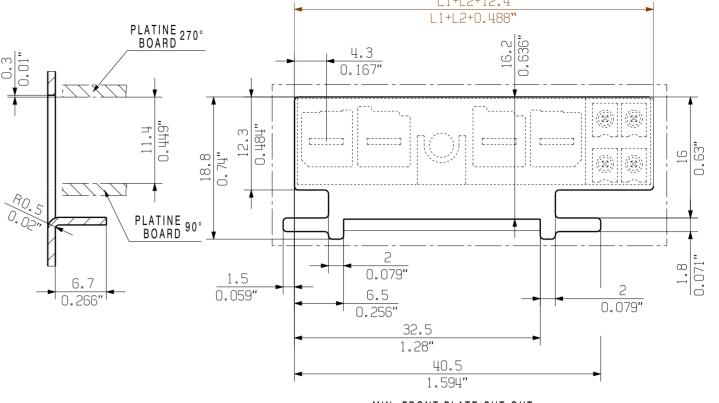
SV-SMT 7.62HP/04/270MSF2 SC04

square nut only for MSF-variants

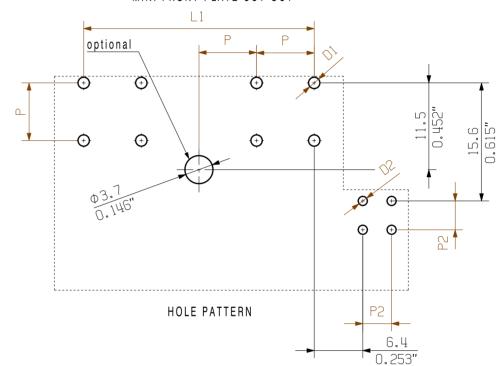
SV-SMT 7.62HP/04/270MF3 SC04

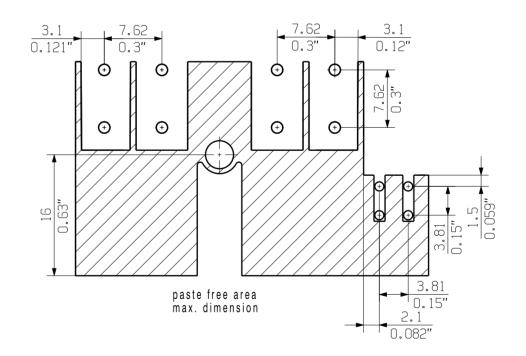
SV-SMT 7.62HP/04/270MSF3 SC04

VKMU nur für MSF-Varianten / square nut only for MSF-variants


VKMU nur für MSF-Varianten /

square nut only for MSF-variants


SV-SMT 7.62HP/04/270MF4 SC04



SV-SMT_7.62HP/04/270MSF4 SC04

MIN. FRONT PLATE CUT-OUT

 $D1 = \emptyset 1.4 + 0.1/-0.05$ $D2 = \emptyset 1.2 + 0.1/-0.05$ d = 0.8x1.0

P = Raster/pitch 7.62P2 = Raster/pitch 3.81

 $MF = \frac{Mittelflansch}{middle}$ MSF = Mittelschraubflansch middle flange with screw

For the mounting of PCBs, it should be noted that the rated data relates only to the PCB components

The neccessary creepage and clearance paths must be observed in connection with the respective applicant in accordance to IEC 664 / VDE 0110. The current-carrying capacity and pitch tolerance is to be determined according to DIN IEC 326 part 3 very fine.

Weidmüller PCB components are tested to the DIN EN 61984 standard, and are valid for its field of application. Provided that the components are used to the intended purpose, all requirements with respect to the

	1.5
	2.6
	3.5
GENERAL TOLERANCE:	I
DIN ISO 2768-m	[mm]

Responsible

EC00002212

05 M(S)F 4	38.1	1.495	POL	POL	POL	M(S)F	POL	POL	
05 M(S)F 3	38.1	1.495	POL	POL	M(S)F	POL	POL	POL	
04 M(S)F 4	30.48	1.196	POL	POL	POL	M(S)F	POL		
04 M(S)F 3	30.48	1.196	POL	POL	M(S)F	POL	POL		
03 M(S)F 3	22.86	0.897	POL	POL	M(S)F	POL			
03 M(S)F 2	22.86	0.897	POL	M(S)F	POL	POL			
02 M(S)F 2	15.24	0.598	POL	M(S)F	POL				
no of	L1	L1	1	2	3	4	5	6	
poles	[mm]	[inch]	POSITION						

Prim PLM Part No.: 225880 Prim ERP Part No.: 2499550000 Max. nos. Weidmüller First Issue Date Modification 14.11.2016 Date Name

30.08.2019 | Helis, Maria

Döhrer, Karl

SV-SMT 7.62HP/IT/../90/270... MALE HEADER

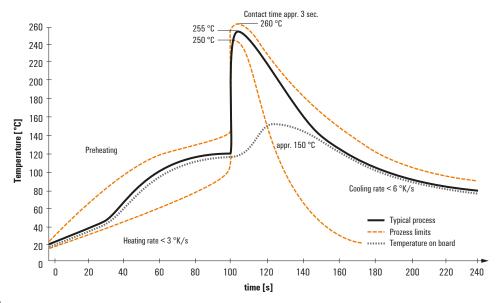
Drawing no.

Sheet 17 of 17 sheets

Size: A2 Approved 09.10.2019 Lang, Thomas Product file: 7407 BLF 7.50HP

Scale: 2:1 Drawings Assembly

occuring of electrical, mechanical, thermic and corrosive stress will be satisfied.


Recommended wave solderding profiles

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 16 D-32758 Detmold Germany

Fon: +49 5231 14-0 Fax: +49 5231 14-292083 www.weidmueller.com

Single Wave:

Double Wave:

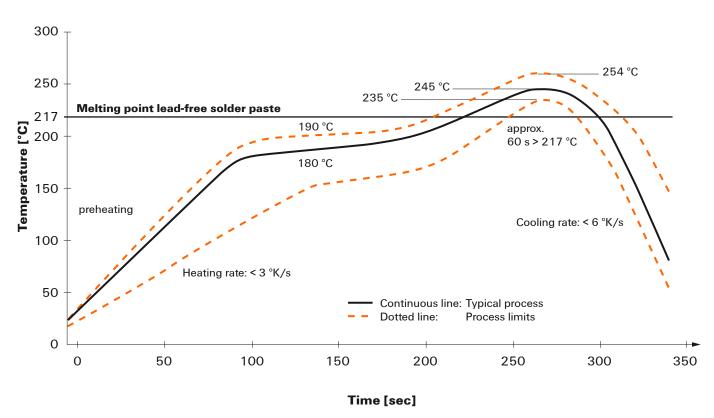
Wave soldering profiles

Wired connection elements should be processed in accordance with the DIN EN 61760-1 standard. We have included two recommendations for practical wave soldering profiles, with which Weidmüller PCB terminals and connectors are qualified.

When choosing a suitable profile for your application, the following factors also need to be considered:

- PCB thickness
- Proportion of Cu in the layers
- Single/double-sided assembly
- Product range
- Heating and cooling rates

The single and double wave profiles each indicate the recommended operating range, including the maximum soldering temperature of 260°C. In practice, the maximum soldering temperature is quite often well below the above maximum profile.



Recommended reflow soldering profile

Weidmüller Interface GmbH & Co. KG

Klingenbergstraße 16 D-32758 Detmold Germany

Fon: +49 5231 14-0 Fax: +49 5231 14-292083 www.weidmueller.com

Reflow soldering profile

The perfect soldering profile for SMT Surface Mount Technology is one the most exiting question in SMT production. But there are more than one correct answer: The diagram of temperature-on-time is related to processing features of solder paste and to maximum load of components.

We have to consider the following parameters:

- · Time for pre heating
- Maximum temperature
- Time above melting point
- · Time for cooling
- · Maximum heating rate
- · Maximum cooling rate

We recommend a typical solder profile with associated process limits. With preheating components and board are prepared smoothly for the solder phase. Heating rate is typically $\leq +3$ K/s. In parallel the solder paste is ,activated'. The time above melting point of 217°C the paste gets liquid and components and boards begin to connect. The maximum temperature of 245°C to 254°C should stay between 10 and 40 seconds. In the cooling phase at \geq -6K/s solder is cured. Board and components cool down while avoiding cold cracks.