

Datasheet for SIMOGEAR Geared Motors

MLFB-Ordering data : 2KJ3513-5JU23-2FS1-Z D11+H09+K01+K06+L02+L85+M66

19.42

Client order no.:Item no.:Order no.:Consignment no.:Offer no.:Project:

Motor data																			
U [V]	D/Y	f _N [Hz]	P _N [kW]	P _N [hp]	I _N [A]	n _N [rpm]	T _N [Nm]	IE-CL	Operating mode	n ₂ [rpm]	T ₂ [Nm]	f _B	η _{4/4 load} [%]	η _{3/4 load} [%]	cos φ	I _A /I _N	T _A /T _N	T _K /T _N	T _H /T _N
400	D	50	15.000	20.11	28.50	1,475	97.11	IE3	S1	29.737	4,817.07	1.66	92.1	92.3	0.82	8.50	2.50	3.80	2.80
690	Υ	50	15.000	20.11	16.50	1,475	97.11	IE3	S1	29.737	4,817.07	1.66	92.1	92.3	0.82	8.50	2.50	3.80	2.80
460	D	60	17.300	23.19	28.00	1,775	93.07	IE3	S1	35.786	4,616.75	1.73	93.6	93.7	0.83	8.50	2.50	3.70	2.80

Motor type 1LE motor with Premium Efficiency LE160ZLL4P

 Number of poles
 4-pole

 Degree of protection
 (K01) IP55

 Thermal class
 155 (F)

 Moment of inertia Jmot
 0.08500 kgm²

Geared motor SIMOGEAR KAF149-LE160ZLL4P Type designation Bevel gearbox KAF149 Gearbox Mounting type gearbox Flange-mounted design **Output shaft** H90 mm (Hollow shaft) Mounting position (D11) M1 output side A 49.60 (8,729 / 176) Transmission ratio **Nominal torque** 8,000.00 Nm Gear oil (K06) Mineral oil CLP VG220 Oil charge Specification CE (Europe / other countries) -15 ... +40 °C **Environment temperature** Weight without oil 393.0 kg Housing material first gearbox Cast iron

Gearbox options					
Flange diameter	(H09) 450 mm				
Hollow shaft cover	Sealing cap				
Output shaft bearing	Standard bearing				
Output shaft sealing	Standard sealing				
Gearbox breather	Pressure breather valve				
Oil level control	Oil level screw				
Oil drain	Oil drain plug				

	Motor options	
Motor protection	Without	

Terminal box position (M66) 3D

Electrical connection at terminal box

Ventilation (M66) 3D

Cable gland metric terminal box

General options						
Surface treatments	Painted					
Coating	(LO2) Coating for normal environmental stress C1					
RAL Color	(L85) 9018 papyrus white					
Coating on flange	-					
Packing	Standard packing					

Further information					
General product information	SIMOGEAR				
Configurator	<u>2KJ</u>				
Operating instructions					
Gearbox	BA 2030				
Motor	BA 2330				

MD 50.1 Geared motors

Le	g	eı	٦d

U = Voltage
D / Y = Circuit
f = Frequency
P_N = Rated motor power

 I_N = Rated current n_N = Rated motor speed T_N = Rated motor torque IE-CL = Efficiency class n₂ = Geared motor output speed

Catalog

 T_2 = Geared motor output torque f_B = Service factor

η = Efficiency *) On request
$$\begin{split} \cos \phi &= \text{Power factor} \\ I_A I_N &= \text{Relative starting current} \\ T_A / T_N &= \text{Relative starting torque} \\ T_d / T_N &= \text{Relative breakdown torque} \\ T_H / T_N &= \text{Relative average acceleration torque} \end{split}$$