

PFMH-##.####.###.##0##.##0#

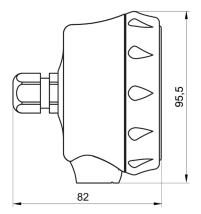
Auf einen Blick

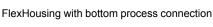
- Frontbündige Membran mit 3-A Sanitary Standards (FDA-konform) und EHEDG
- Resistent gegen alle gängigen CIP-Reinigungsmedien und SIP-fähig (150 °C max, < 30 min)
- Ausführungen für hohe Medientemperaturen erhältlich (200 °C)
- Eingebautes Grafikdisplay (CombiView DFON optional) erhältlich und programmierbar über Touchscreen oder mit FlexProgrammer 9701
- Optional mit zusätlichen Relais-Ausgängen und 4 ... 20 mA mit HART
- Optional mit ATEX Zertifizierung erhältlich (4 ... 20 mA Ausgangssignal)

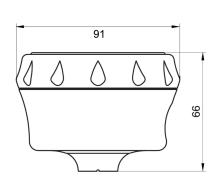
Technische Daten			
Leistungsmerkmale		Leistungsmerkmale	
Messbereich	-1 68 bar	Hochlaufzeit	< 10 s
Min. Messspanne	0.05 bar	Prozessbedingungen	
Max. Messspanne Druckart	69 bar Absolut (gegen Vakuum) Relativ (gegen Umgebung)	SIP/CIP-Kompatibilität	< 60 min, ohne Kühlstrecke @ Medien- temperatur bis 150 °C Dauerhaft, mit Kühlstrecke @ Medien- temperatur bis 200 °C
Standardmessfehler (BFSL)	± 0.04 % FSR , bis 2:1 Turn-Down Verhältnis	Prozessdruck	Siehe Abschnitt "Betriebsbedingungen"
(Bi GE)	± 0.1 % FSR , bis 4:1 Turn-Down Verhält- nis	Prozesstemperatur	-40 125 °C , ohne Kühlstrecke -40 200 °C , mit Kühlstrecke
	Beinhaltet die Linearitätsabweichung	Prozessanschluss	
	(nach Kleinstwerteinstellung, BFSL) so- wie Hysterese und Nichtwiederholbarkeit	Anschlussvarianten	Siehe Abschnitt "Masszeichnungen"
	Bei Turn-Down ist dieser Wert mit dem angewandten Turn-Down-Verhältnis zu multiplizieren	Prozessberührendes Material, Dichtung	EPDM, optional EPDM O-Ringe sind konform zu 3-A Sa- nitary Standard 18-03 Klasse II, Dichtun- gen sind konform zu 3-A Sanitary Stan-
Max. Messabweichung	± 0.1 % FSR , bis 2:1 Turn-Down Verhält- nis		dard 18-03 Klasse I (8% Milchfett max.)
	± 0.25 % FSR , bis 4:1 Turn-Down Verhältnis	Prozessberührendes Material, Membrane	AISI 316L (1.4435)
	Beinhaltet die Nullpunkt-, Endwert- und Linearitätsabweichung (nach Grenz-	Prozessberührendes Material, Prozessanschluss	AISI 316L (1.4404)
	punkteinstellung) sowie Hysterese und	Surface roughness (in conta	ct with medium)
	Nichtwiederholbarkeit (EN 61298-2) (Tamb = 20 °C)	Membrane	Ra ≤ 0,4 µm
	Bei Turn-Down ist dieser Wert mit dem angewandten Turn-Down-Verhältnis zu	Prozessanschluss Baumer Hygieneanschluss	Ra ≤ 0,8 µm
Temperatur-Koeffizient	multiplizieren ≤ 0.05 % FSR/10 K , Messspanne	Prozessanschluss Tri- Clamp	Ra ≤ 0,4 µm
·	≤ 0.05 % FSR/10 K , Nullpunkt	Prozessanschluss Varivent®	Ra ≤ 0,8 µm Ra ≤ 0,4 µm, elektropoliert, optional
Kompensierter Temperatur- bereich	-40 85 °C	Schweissnaht	Ra ≤ 0,8 µm
Langzeitstabilität	≤ 0.1 % FSR/a , IEC 770 6.3.2	Umgebungsbedingungen	· •
Max. Turn-Down-Verhältnis	10:1	Vibration	DNV hohe Schwingungsbelastung,
Anstiegszeit (10 90 %)	≤ 0.3 s		Klasse B
Messzeit	≤ 0.3 s	Schwingen (sinusförmig) (EN 60068-2-6)	1,6 mm p-p (2 25 Hz), 4 g (25 100 Hz), 1 Oktave / min.

PFMH-##.####.###0##.##0#

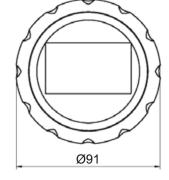
Technische Daten							
Umgebungsbedingungen		Speisung					
Schutzart (EN 60529)	IP 67 , mit Kabelverschraubung	Betriebsspannungsbereich	10 35 V DC				
	IP 69K , mit Steckverbindung M12	ATEX II 1G Ex ia IIC T5					
Luftfeuchtigkeit	< 98 % RH , kondensierend	Höchstwerte zur Auswahl	30 V DC , max.				
Arbeitstemperaturbereich	-40 85 °C	der Barriere, Ui					
Lagertemperaturbereich	-40 85 °C	Höchstwerte zur Auswahl	100 mA				
Ausgangssignal		der Barriere, li					
Stromausgang	4 20 mA 4 20 mA , + HART®	Höchstwerte zur Auswahl der Barriere, Pi	750 mW				
	20 4 mA , programmierbar	Interne Kapazität, Ci	< 15 nF				
Lastwiderstand	RQ = (Usupply - 10 V)/20 mA	Interne Induktivität, Li	< 10 µH				
Isolationswiderstand	$> 100~\text{M}\Omega$, $500~\text{V}$ DC	Temperaturklasse, T1 T5	-20 < Tamb < 60 °C Zone 0 und 20				
Sensorbruch	20 23 mA , programmierbar		-40 < Tamb < 65 °C Zone 1/2 und 21/22				
	3.6 4 mA , programmierbar	ATEX II 3G Ex nA II T5					
Gehäuse		Betriebsspannungsbereich	10 35 V DC				
Baugrösse	Siehe Abschnitt "Masszeichnungen"	Strombelastung, In	100 mA				
Bauform	Prozessanschluss unten	Temperaturklasse, T1 T5	-30 < Tamb < 65 °C				
	Prozessanschluss hinten	Konformität und Zulassung	en				
Material	AISI 304 (1.4301)	EMV	EN 61000-6-2				
Elektrischer Anschluss			EN 61000-6-3				
Kabelverschraubung	M16x1.5, Kunststoff M16x1.5, Edelstahl M20x1.5, Kunststoff	Explosionsschutz	ATEX II 1D Ex ia IIIC T100 °C Da ATEX II 1G Ex ia IIC T5 ATEX II 3G Ex nA II T5				
	M20x1.5, Edelstahl	Hygiene	3-A				
Steckverbindung	M12-A, 5-Pin, Edelstahl M12-A, 8-Pin, Edelstahl		EHEDG FDA				


Messbereich	Überlastgrenze	Berstdruck
(bar)	(bar)	(bar)
0 0.345	1	2
-1 1	3	6
-1 5	15	30
-1 20	60	120
-1 34	70	140
-1 68	135	270

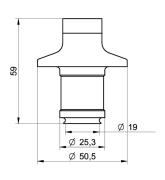


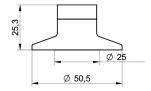

PFMH-##.####.###0##.##0#

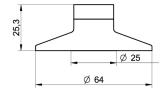
Masszeichnungen


Gehäuse

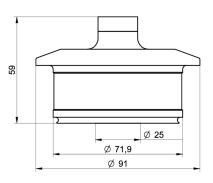
FlexHousing with rear process connection

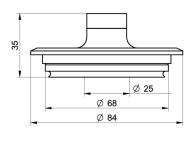

Front view

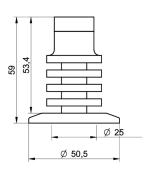

Vorderansicht


Prozessanschluss hinten

Prozessanschluss


Prozessanschluss unten

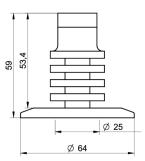



BHC 3A DN 38, Membrane Ø 25 mm (BCID: B01)

Tri-Clamp Ø 50.5, Membrane Ø 25 mm (BCID: C04)

Tri-Clamp Ø 64.0, Membrane Ø 25 mm (BCID: C05)

BHC 3A DN 76, Membrane Ø 25 mm (BCID: B02)


Varivent® DN 32 ... 125; 1 1/2" ... 6" (Type N), Ø 68, Membrane Ø 25 mm (BCID: V02)

Tri-Clamp Ø 50.5, Membrane Ø 25 mm (BCID: C04) mit Kühlstrecke

PFMH-##.####.###0##.##0#

Prozessanschluss

Tri-Clamp Ø 64.0, Membrane Ø 25 mm (BCID: C05) mit Kühlstrecke

COS) Till Kurlistrecke			
lektrischer Anschluss			
Ersatzschaltbild	Elektrischer Anschluss	Funktion	Anschlussbelegung
	1.1		
o ^{+Vs}		+Vs	+
Q		lout	-
	Zero , s		
→ 4 20 mA			
lout	4 3	+Vs	1
	(● 5 ●)	lout	3
-Vs	1	R1	5
R1		R2	4
Ų	<i>/</i>	R1 + R2	2
DFON R1+ R2			
4 20 mA	5 1	+Vs	2
T		lout	7
lout	7 ((● ● ●)) 3	R1	5, 6
	1 2	R2	3, 4
O ^{+Vs}	\rightarrow	n.c.	1, 8
\O^\\\	1 2	+Vs	+
DFON R2	3 4 5 6	lout	<u>.</u>
4 20 mA R2		R1	5, 6
Ţ	O CONTRACTOR OF THE CONTRACTOR	R2	3, 4
lout		n.c.	1, 2

Bestellangaben

Typenschlüssel - Konfigurationsmöglichkeiten siehe Website

	PFMH	-	#	#	###	#	##	##	#	##	#	0	#	#	#	0	#	####	
Produkt																			
	PFMH																		
Gehäuse																			
Edelstahl 1.4301 / AISI304 Prozessanschluss unten			5																
Edelstahl 1.4301 / AISI304 Prozessanschluss hinten			6																

PFMH-##.####.###0##.##0#

	PFMH	- #	# .	###	#	##	##	#	٠	##	#	0	#	#	•	#	0 #	####
Genauigkeit																		
±0.25 % FS			4															
±0.10 % FS			5															
Druckbereich und Einheit																		
Min. 0.0 / Max 0.345 bar				BC1														
(kein Vakuum- oder Absolutdruck)																		
Min1.0 / Max 1.0 Bar				BC2														
Min1.0 / Max 5.0 Bar				BC3														
Min1.0 / Max 20.0 Bar				BC4														
Min1.0 / Max 34.0 Bar				BC5														
Min1.0 / Max 68.0 Bar				BC6														
Druckart																		
Relativ (gegen Umgebung)					R													
Absolut (gegen Vakuum)					Α													
Ausgangssignal																		
420 mA						A1												
420 mA + HART®						C1												
Elektrischer Anschluss																		
M12-A, 5-Pin							15											
M12-A, 8-Pin							18											
Kabelverschraubung, M16x1.5							55											
Kabelverschraubung, M20x1.5							57											
Material für elektr. Anschluss																		
Kunststoff								1										
Edelstahl, AISI 304 (1.4301)								3										
Prozessanschluss																		
BHC 3A DN 38 (B01)										50								
ISO 2852 (Tri-Clamp), DN 33.7; 38, Ø 50.5 (C04)										51								
DIN 32676-C (Tri-Clamp), DN 3/4, Ø 24.9 (C01)										52								
ISO 2852 (Tri-Clamp), DN 40; 51, Ø 64.0 (C05)										54								
BHC 3A DN 76 (B02)										56								
Varivent® DN 32 125; 1 1/2 6 (Type N), Ø 68 (V02)										61								
ISO 2852 (Tri-Clamp), DN 33.7; 38, Ø 50.5 mit Kühlstrecke (C04)										81								
ISO 2852 (Tri-Clamp), DN 40; 51, Ø 64.0 mit Kühlstrecke (C05)										84								
Mat. der medienberührten Teile Edelstahl 1.4404/AISI 316L											2							
Edelstahl 1.4435 BN2/AISI 316L, elektropoliert, Ra<0.4											F							
Dichtung Ohne												0						
Ölfüllung												•						
Standardöl													1					
NSF H1 gelistet (FDA zugel.)													2					
Display													_					
Ohne Display														1				
Mit Display, Relais nicht aktiviert														2				
Mit Display, Relais aktiviert														4				
ATEX																		
Standard Ausführung																0		
Ex nA II T5 (Gas)																3		

PFMH-##.####.###0##.##0#

Typenschlüssel - Konfigurationsmöglichkeiten sie																
	PFMH -	#	# .	###	#	. ##	##	# .	##	#	0 #	# #	. #	ŧ 0	#	###
Ex ia IIC T5 Ga or Ex ia IIIC T100°C Da (Gas oder Staub)													5	5		
Zulassungen																
Standard Zulassungen														0		
Konfiguration																
Keine Konfiguration															0	
Konfiguration des Messbereichs															1	
Konfiguration des Messbereichs + Display															2	
Konfiguration des Messbereichs + Display inkl. 2 Relais															3	
Option Oberfläche																
Oberfläche Ra < 0,4 µm																9059
Oberfläche Elektropoliert																9060