FlexTemp 2311 Universal Messumformer

4...20 mA Messumformer

Universelle Eingänge:

Widerstandsthermometer (RTD) Thermoelemente(T/C) Spannung (mV) Widerstand (R)

Isolationsspannung 2 kVAC

Genauigkeit 0,1°C (Pt100)

Konfigurierung mit FlexProgrammer

Konfigurierbar: Linearisierung, Dämpfung und Statusanzeige

Interne, externe oder festgelegte Vergleichsstellen-Kompensation (CJC)

Beschreibung

Der FlexTemp 2311 ist ein 4...20 mA, über die Strom-Schleife gespeister, konfigurierbar, universeller Messumformer mit galvanischer Trennung zwischen Eingang und Ausgang. Der Eingang kann für Widerstandsthermometer, Thermoelemente, Widerstands-Sensoren, Strom- und Spannungssignale konfiguriert werden.

Es kann ein 2-, 3- oder 4-Leiter Widerstands-Eingang gewählt werden. Ein eingebauter Temperatursensor oder ein extern angebrachter Pt100 Sensor kann zur Vergleichsstellen-Kompensation bei Thermoelementen eingesetzt werden.

Die Konfiguration kann mittels eines FlexProgrammers von Bourdon-Haenni vorgenommen werden.

www.baumerprocess.com Datenblatt 2311-1

Technische Daten

Eingang

Genauigkeit Siehe Messbereichstabelle

Vergleichsstellen-

 $\begin{tabular}{ll} \mbox{Kompensation} & \mbox{Intern} < 0.7^{\circ}\mbox{C \{1\}} \\ \mbox{Messstrom} & \mbox{0,2 mA, kontinuierlich} \\ \end{tabular}$

Leitungswiderstand

2-Leiter Max. 30 Ohm/Leiter {1} 3-/4-Leiter T > 600° C: Max. 10 Ohm/Leiter 3-/4-Leiter T < 600° C: Max. 30 Ohm/Leiter

Überspannungsschutz+/- 35 VDCStörschutz bei Frequenz50 und 60 HzAuflösung16 bitWiderholgenauigkeit< 0,05°C</th>

Elektrischer Ausgang

 $\textbf{Stromsignal} \hspace{1cm} 4...20 \hspace{1mm} \text{mA, 2-Leiter } \{1\}$

20...4 mA, 2-Leiter {1}

Charakteristik Linear oder nach Kundenwunsch

max. 30 Punkte {1}

Genauigkeit < 0,1% vom Endwert

Spannungsversorgung 6,5...35 VDC

Welligkeit Versorgungssp. $3 V_{rms}$

 $\label{eq:Burdeberechnung} \begin{aligned} & \textbf{B}\ddot{\textbf{u}}\textbf{rdeberechnung} & \textbf{P}_{\textbf{L}} \leq (\textbf{V}_{\textbf{B}} - 6,5)/23 \text{ [kOhm]} \\ & \textbf{Signalbegrenzung} & 23 \text{ mA/3,5 mA \{1\}} \end{aligned}$

Dämpfung 0...30 s {1}

Ansprechzeit (t_{qq}) Pt100 1,0 s; T/C 1,6 s

Auflösung 12 bit

Betriebsbedingungen

Arbeitstemperatur -40...85°C Lagertemperatur -55...90°C

Relative Feuchte < 90%, kondensierend **Schwingungen** Lloyds Register, Prüfung 2

CE-Zeichen/EMV

Bezugsnormen EN 61000-6-3, EN 61000-6-2

Gerätenorm EN 61326

Mechanische Eigenschaften

Abmasse 62 x 88 x 24 mm

Schutzklasse Gehäuse: IP 30 ; Klemmen: IP 10

Andere Eigenschaften

Isolationsspannung 50 Vac ; Prüfung 2 kVac

Temperaturdrift Typ. 0,003% je °C

Max. 0,01% je °C

Aufwärmzeit1,8...3,9 sFehlerinformationNamur NE43

Prüfbedingungen

Bereichswahl Pt100; 0...100°C **Referenztemperatur** 23°C +/- 2°C

Entsorgung von Produkt und Verpackung

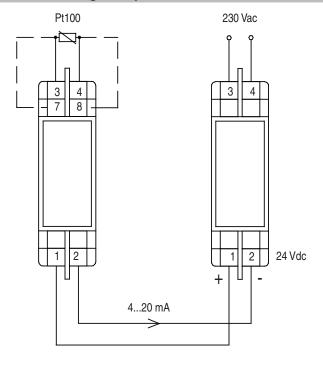
Gemäss den nationalen Vorschriften oder durch den Hersteller

Fussnote

{1} Konfigurierbar

{2} Die max. Temperatur ist für Widerstands-Elemente im Bereich von 500...1000 Ohm reduziert, z.B. Pt1000 max. 350°C.

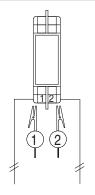
Übersicht über konfigurierbare Messbereiche


Тур	Standard	Bereich	Min. Bereich	Genauigkeit	Auflösung
Pt25Pt1000	DIN/EN/IEC 60751	-200850°C {2}	10°C	0,1°C	0,1°C
Pt25Pt1000	a = 0.003902	-200850°C {2}	10°C	0,1°C	0,1°C
Pt25Pt1000	a = 0,003916	-200850°C {2}	10°C	0,1°C	0,1°C
Ni25Ni1000	DIN 43760	-50250°C {2}	10°C	0,1°C	0,1°C
Cu25Cu1000	0,428 Ohm/°C	-50200°C	10°C	0,1°C	0,1°C
B(PtRh30-Pt)	IEC 584	1001820°C	50°C	2°C	0,1°C
E(NiCr-CuNi)	IEC 584	-270900°C	50°C	1°C	0,1°C
J(Fe-CuNi)	IEC 584	-2101200°C	50°C	1°C	0,1°C
K(NiCr-Ni)	IEC 584	-2501370°C	50°C	1°C	0,1°C
L(Fe-CuNi)	DIN 43710	-200900°C	50°C	1°C	0,1°C
N(NiCrSi-NiSi)	IEC 584	-2001300°C	50°C	1°C	0,1°C
R(PtRh13-Pt)	IEC 584	-501750°C	100°C	2°C	0,1°C
S(PtRh10-Pt)	IEC 584	-501750°C	100°C	2°C	0,1°C
T(Cu-CuNi)	IEC 584	-250400°C	40°C	1°C	0,1°C
U(Cu-CuNi)	DIN 43710	-200600°C	50°C	1°C	0,1°C
W5-Re (Type C)	ASTM 988	02300°C	100°C	2°C	0,1°C
W3-Re (Type D)	ASTM 988	02300°C	100°C	2°C	0,1°C
Lin. Spannung		-1070 mV	2 mV	0,04 mV	0,1 mV
Lin. Spannung		-0,11,1 V	20 mV	0,4 mV	1 mV
Lin. Widerstand		0390 Ohm	5 Ohm	0,05 Ohm	0,01 Ohm
Lin. Widerstand		02200 Ohm	25 Ohm	0,25 Ohm	0,1 Ohm

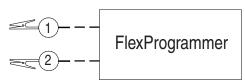
www.baumerprocess.com Datenblatt 2311-1

Bestellangaben - FlexTemp 2311

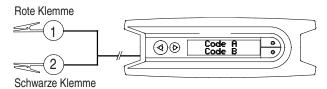
	2311 000x (x)
Тур	8´Ziffer
Nicht konfiguriert, Standard	1
Konfigurierung	9´Ziffer
Kein konfiguration	0
Konfiguriert nach Kundenwunsch	С


Anwendungsbeispiel

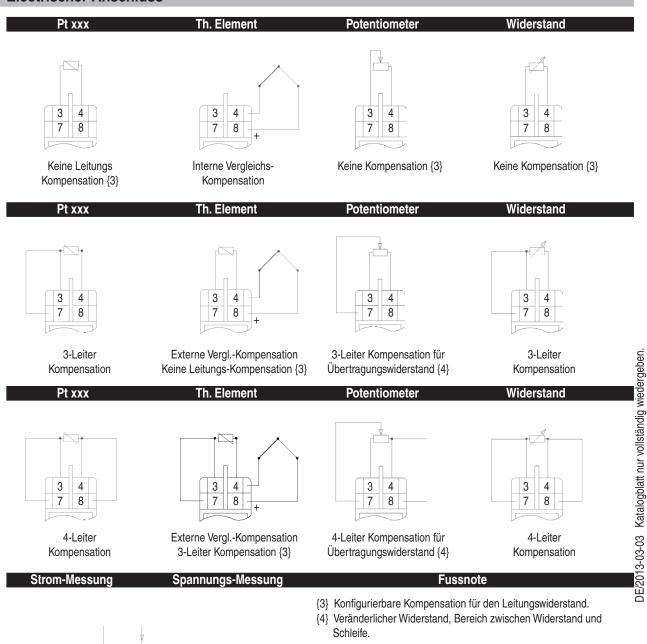
FlexTemp 2311

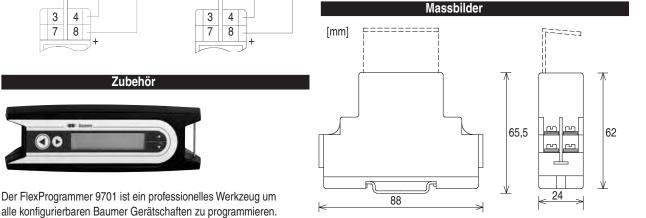

Versorgung

Konfiguration



Anmerkung: Spannungsversorgung unterbrechen, dann den FlexProgrammer an den FlexTemp 2311 anschliessen.


FlexProgrammer 9701



Anmerkung: Umgebungstemperaturbereich 0...50°C

www.baumerprocess.com Datenblatt 2311-1

Electrischer Anschluss

Die Baureihe 9701-0001 beinhaltet:

FlexProgrammer Interface Einheit CD mit der FlexProgram Software und den Produkttreibern (DTM) USB Kabel

Kabel mit zwei Krokodilklemmen