PP20R

Kompetitiver Drucksensor für Bahnanwendungen PP20R-1.####R.########4#00.050

Auf einen Blick

- Erfüllt EN 50155
- Mit der hohen Isolationsfestigkeit von 1 kV AC übersteigt die Norm EN 50155
- Hohe Genauigkeit über einen breiten Temperaturbereich (-40 ... 125 °C) durch aktive Temperaturkompensation
- Erweiterte EMV Festigkeit im Vergleich zu EN 50121-3-2
- Nachverfolgbarkeit nach GS1 Standard
- Entwickelt für ein breites Spektrum an Bahnanwendungen wie bspw. Pantographenregelung, Kühlmittelumwälzpumpen und Bremssysteme

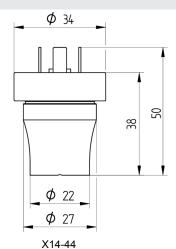
EN 50155

Technische Daten								
Leistungsmerkmale		Prozessanschluss						
Druckart Kompensierter Temperatur- bereich	Relativ (gegen Umgebung) -10 60 °C	Prozessberührendes Material	AISI 304 (1.4301) Keramik, 96% AL2O3 FVMQ					
Langzeitstabilität Max. Messabweichung	≤ 0.2 % FSR/a ± 0.3 % FSR ± 0.5 % FSR ± 1.0 % FSR Beinhaltet die Nullpunkt-, Endwert- und Linearitätsabweichung (nach Grenz-		NBR, optional FKM- (Viton®) Dichtungen erfordern eine Umgebungstemperatur von mindes ten -20 °C und eine Medientemperatur von mindesten -25 °C EPDM, optional					
	punkteinstellung) sowie Hysterese und	Umgebungsbedingungen						
	Nichtwiederholbarkeit (EN 61298-2) (Tamb = 20 °C)	Prüfungen für Schwingen und Schocken (EN	Schwingen: Kategorie 2, Schocken: Kategorie 1, 2, 3					
Max. Messspanne	16 bar	61373:1999, 2010)	Es gelten die jeweils höheren Schärfegrade der Ausgaben 1999 und 2010 in					
Messbereich	0 16 bar		jeder Kategorie 2					
Ansprechzeit	< 3 ms	Schutzart (EN 60529)	IP 65 , mit Steckverbindung DIN EN					
Standardmessfehler (BFSL)	± 0.12 % FSR ± 0.2 % FSR ± 0.4 % FSR Beinhaltet die Linearitätsabweichung (nach Kleinstwerteinstellung, BFSL) so-		175301-803 A (DIN 43650 A), 4-Pin IP 67, mit Steckverbindung M12-A, 4-Pin IP 69K, mit Steckverbindung M12-A, 4-Pin					
	wie Hysterese und Nichtwiederholbarkeit	Isolationswiderstand	$> 100~\text{M}\Omega$, 500 V DC					
Min. Messspanne Temperatur-Koeffizient	0.25 bar ≤ 0.05 % FSR/10 K , Messspanne ≤ 0.05 % FSR/10 K , Nullpunkt	Arbeitstemperaturbereich	-40 105 °C , mit Spannungsausgang -40 115 °C , mit Stromausgang @ Be- triebsspannungsbereich 26.4 35 V DC					
Prozessbedingungen			-40 125 °C , mit Stromausgang @ Be- triebsspannungsbereich 11 26.3 V DC					
Prozessdruck	Siehe Abschnitt "Betriebsbedingungen"	Lagertemperaturbereich	-40 125 °C					
Prozesstemperatur	-40 105 °C , mit Spannungsausgang	Ausgangssignal	-40 123 C					
	-40 115 °C , mit Stromausgang @ Betriebsspannungsbereich 26.4 35 V DC	Kurzschlussfestigkeit	Ja					
	-40 125 °C , mit Stromausgang @ Be-	•	4 20 mA , 2-Leiter					
	triebsspannungsbereich 11 26.3 V DC Stromausgang Stromausgang Spannungsausgang		0 2 V					
Prozessanschluss Anschlussvarianten	Siehe Abschnitt "Masszeichnungen"	Opannungsausgang	1 5 V 0 10 V					
	Ğ	Gehäuse						
		Baugrösse	Siehe Ahschnitt "Masszeichnungen"					
		DaugiUSSE	Siehe Abschnitt "Masszeichnungen"					

PP20R

Kompetitiver Drucksensor für Bahnanwendungen PP20R-1.####R.#########4#00.050

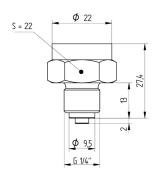
Technische Daten									
Gehäuse		Konformität und Zulassungen							
Bauform	Kompakt-Transmitter E		EAC (TR CU 020/2011) EN 61326-1:2013						
Material	AISI 304 (1.4301)		EN 50121-3-2:2016						
Elektrischer Anschluss			EN 55011:2009 (Klasse A)						
Steckverbindung	M12-A, 4-Pin DIN EN 175301-803 A (DIN 43650 A), 4-	Bahnanwendungen	EN 50155						
	Pin	Brandschutz	EN 45545 HL 2 / HL 3						
Speisung									
Betriebsspannungsbereich	11 35 V DC , mit Stromausgang 14 35 V DC , mit Spannungsausgang								

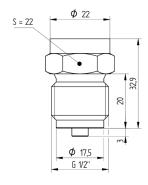

Betriebsbedingungen					
	Messb	ereich		Überlastgrenze	Berstdruck
	(b	ar)		(bar)	(bar)
0 0.25				2	4
0 2.5				4	7
0 4				8	15
0 6				10	15
0 10	0 2.5 verstärkt	0 4 verstärkt	0 6 verstärkt	20	35
0 16				32	50

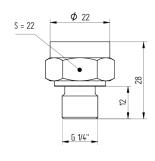
Masszeichnungen

Gehäuse

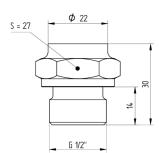
X04-14 M12-A, 4-pin

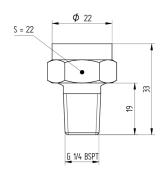

X14-44 DIN EN 175301-803 A (DIN 43650 A), 4-pin


PP20R


Kompetitiver Drucksensor für Bahnanwendungen PP20R-1.####R.########4#00.050

Masszeichnungen


Prozessanschluss



G30-02 G 1/4 B EN 837-1

G31-03 G 1/2 B EN 837-1

G50-06

G 1/4 A DIN 3852-E

G51-09 G 1/2 A DIN 3852-E R03-17 R 1/4 BSP - Tr

Elektrischer Anschluss

PP20R

Ausgangssignal	Ersatzschaltbild	Elektrischer Anschluss	Funktion	Anschlussbelegung
		4 3	+Vs	1
	o ^{+Vs}		lout	3
	Ú		Gehäusemasse	Steckergewinde
4 20 mA (2-Leiter) $+ 4 \dots 20 \text{ mA}$			n.c.	2, 4
	olout	3	+Vs	1
		(2[]1)	lout	2
		-	Gehäusemasse	Erdungsfahne
		m	n.c.	3
		4 3	+Vs	1
			Uout	2, 4
0 10 V (3-Leiter)	ro+Vs		GND (0 V)	3
	Uout	_	Gehäusemasse	Steckergewinde
· · · · · · · · · · · · · · · · · · ·	010 V	3	+Vs	1
	GND (0 V)	(²[↓]¹)	Uout	3
			GND (0 V)	2
The state of the s		<i>m</i> —	Gehäusemasse	Erdungsfahne

Bestellangaben

Typenschlüssel - Konfigurationsmöglichkeiten siehe Website

	PP20R	- 1 .	#	###	R	. ##	##	. ##	4	#	0	0.	0	5	0
Produkt															
	PP20R														
Gehäusematerial															
Edelstahl 1.4301 AISI 304		1													
Genauigkeit															
±1.0 % FS			1												
±0.5 % FS			3												
± 0.3 % FS			В												
Messbereich															
0 0.25 bar (EN)				B10											
0 2.5 bar (EN)				B18											
0 2.5 bar (EN), verstärkt				BA8											
0 4 bar (EN)				B19											
0 4 bar (EN), verstärkt				BA9											
0 6 bar (EN)				B20											
0 6 bar (EN), verstärkt				BA0											
0 10 bar (EN)				B22											
0 16 bar (EN)				B24											
Druckart															
Relativ (gegen Umgebung)					R										
Ausgangssignal															
420 mA						A1									
010 V						A2									
15 V						А3									
02 V						A9									
Elektrischer Anschluss															
M12-A, 4-Pin							14								
DIN EN 175301-803 A (DIN 43650 A), 4-Pin							44								

PP20R

Kompetitiver Drucksensor für Bahnanwendungen PP20R-1.####R.####.##4#00.050

Typenschlüssel - Konfigurationsmöglichkeiten siehe Website	DDOOD		ш	шии	_	ш		,,,		ш	_			_	
Prozessanschluss	PP20R	- 1	. #	###	к.	##	##	. ##	‡ 4	#	U	U	. 0	5	(
G 1/4 B EN 837-1 (G30)								02	,						
G 1/2 B EN 837-1 (G30)								03							
G 1/4 A DIN 3852-E (G50)								06							
G 1/2 A DIN 3852-E (G51)								09							
R 1/4 BSP-TR (R03)								17							
Material Prozessanschluss															
Edelstahl 1.4301 AISI 304									4						
Dichtung															
NBR Standard										1					
EPDM										2					
FKM (Viton®)										3					
FVMQ										6					
Ölfüllung															
Ohne											0				
Display															
Ohne												0			
ATEX													_		
Ohne													C)	
Zulassungen Railway (EN 50155)														5	
Konfiguration														J	
Keine Konfiguration															C
Tomo Tomigaration															٠,