

CFS50-AEV11X03 CFS50

MOTOR-FEEDBACK-SYSTEME ROTATIV INKREMENTAL MIT KOMMUTIERUNG

Bestellinformationen

Тур	Artikelnr.	
CFS50-AEV11X03	1065228	

Weitere Geräteausführungen und Zubehör → www.sick.com/CFS50

Abbildung kann abweichen

Technische Daten im Detail

Performance

Strichzahl je Umdrehung	2.048 ¹⁾
Messschritt	90° /Strichzahl
Kommutierungssignale	3 Polpaare (siehe Diagramm, andere Kommutierung auf Anfrage)
Referenzsignal, Anzahl	1
Referenzsignal, Lage	90° elektrisch, logisch verknüpft mit A und B
Arbeitsdrehzahl	≤ 6.000 min ⁻¹

 $^{^{1)}}$ Strichzahlen von 1 ... 1.000 und > 4.096 ... 65.536 auf Anfrage.

Schnittstellen

Kommunikationsschnittstelle

Elektrische Daten	
Anschlussart	Litze, 15-polig, radial
Versorgungsspannung	4,5 V DC 5,5 V DC
Stromaufnahme	60 mA ¹⁾
Maximale Ausgabefrequenz	≤ 820 kHz

Inkremental

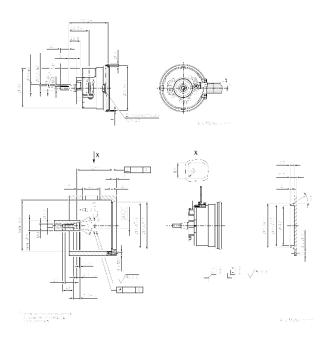
Mechanische Daten

Wellenausführung	Konuswelle
Flanschart / Drehmomentstütze	Gummiabstützung
Abmessungen/Maße	Siehe Maßzeichnung
Gewicht	0,1 kg
Trägheitsmoment des Rotors	10 gcm ²
Betriebsdrehzahl	12.000 min ⁻¹
Winkelbeschleunigung	≤ 200.000 rad/s²
Betriebsdrehmoment	0,2 Ncm
Anlaufdrehmoment	0,4 Ncm
Zulässige Wellenbewegung des Antriebselements, statisch	Radial ± 0,75 mm axial
Zulässige Wellenbewegung des Antriebselements, dynamisch	± 0,1 mm radial ± 0,2 mm axial

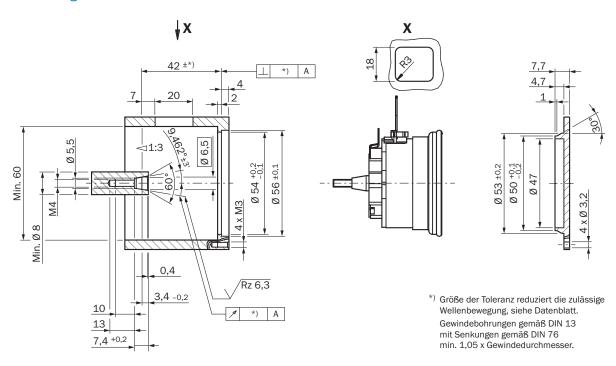
¹⁾ Ohne Last.

Winkelbewegung senkrecht zur Drehachse, statisch	± 0,005 mm/mm
Winkelbewegung senkrecht zur Drehachse, dynamisch	± 0,0025 mm/mm
Lebensdauer der Kugellager	3,6 x 10 ⁹ Umdrehungen

Umgebungsdaten


Betriebstemperaturbereich	-20 °C +115 °C
Lagertemperaturbereich	-40 °C +125 °C, ohne Verpackung
Relative Luftfeuchtigkeit/Betauung	90 %, Betauung nicht zulässig
Widerstandsfähigkeit gegenüber Schocks	100 g, 10 ms (nach EN 60068-2-27)
Frequenzbereich der Widerstandsfähigkeit gegenüber Vibration	20 g, 10 Hz 2.000 Hz (nach EN 60068-2-6)
EMV	Nach EN 61000-6-2 und EN 61000-6-3 ¹⁾
Schutzart	IP40 (nach IEC 60529)

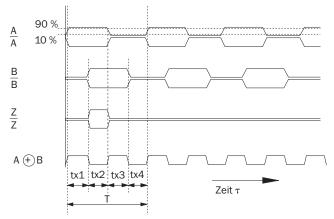
¹⁾ Die EMV entsprechend den angeführten Normen wird gewährleistet, wenn das Motor-Feedback-System in einem elektrisch leitenden Gehäuse montiert ist, das über einen Kabelschirm mit dem zentralen Erdungspunkt des Motorreglers verbunden ist. Der GND-(0 V) Anschluss der Versorgungsspannung ist dort ebenfalls mit Erde verbunden. Bei Verwendung anderer Schirmkonzepte muss der Anwender eigene Tests durchführen.


Klassifikationen

ECI@ss 5.0	27270501
ECI@ss 5.1.4	27270501
ECI@ss 6.0	27270590
ECI@ss 6.2	27270590
ECI@ss 7.0	27270501
ECI@ss 8.0	27270501
ECI@ss 8.1	27270501
ECI@ss 9.0	27270501
ECI@ss 10.0	27273805
ECI@ss 11.0	27273901
ETIM 5.0	EC001486
ETIM 6.0	EC001486
ETIM 7.0	EC001486
UNSPSC 16.0901	41112113

Maßzeichnung (Maße in mm)

Anbauvorgaben

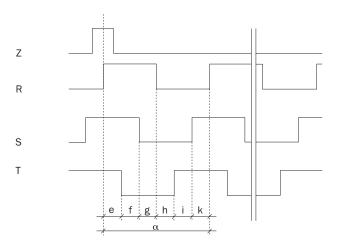


PIN-Belegung

PIN	Farbe	Signal
1	Blau	Masseanschluss (GND)
2	Rot	Versorgungsspannung 5 V \pm 10 $\%$ (U $_{\rm S}$)
3	Gelb	Referenzsignal invertiert (\overline{Z})
4	Lila	Referenzsignal (Z)
5	Braun	Inkrementalsignal invertiert $(\overline{\mathbf{A}})$
6	Weiß	Inkrementalsignal (A)
7	Schwarz	Inkrementalsignal invertiert (\overline{B})
8	Rosa	Inkrementalsignal (B)
9	Weiß/Rot	Kommutierungssignal invertiert $(\overline{\overline{I}})$
10	Weiß/Grau	Kommutierungssignal (T)
11	Weiß/Blau	Kommutierungssignal invertiert (\overline{S})
12	Weiß/Gelb	Kommutierungssignal (S)
13	Weiß/Rosa	Kommutierungssignal invertiert (\overline{R})
14	Weiß/Grün	Kommutierungssignal (R)
15	Grau	Elektronische Einstellung der Kommutierungssignale (SETO)

Diagramme

Bei konstanter Drehzahl, mit Blick auf die Eingangswelle und Drehung im Uhrzeigersinn


Bei konstanter Drehzahl, mit Blick auf die Eingangswelle und Drehung im Uhrzeigersinn.

Durch Verknüpfen der beiden Signale A und B entsteht ein Ausgangssignal, dessen Periodendauern tx1 ... tx4 unterschiedliche Größen haben.

Die Unterschiede sind bestimmt:

- Durch die Toleranz Impuls-/Pausenverhältnis der einzelnen Kanäle
- Durch die Toleranz in der 90°-Phasenverschiebung zwischen A und B
- Durch die Frequenz

Die Zeiten $tx1 \dots tx4$ müssten im Idealfall jeweils 1/4 der Periodendauer T betragen. Die typische Ausgangsfrequenz des Encoders ist so definiert, dass die max. Zeit tx kleiner als 1,5 x T/4 ist.

Polpaare	Polzahl	e, f, g, h, i, k	α
2	4	30°	180°
3	6	20°	120°
4	8	15°	90°
6	12	10°	60°
8	16	7,5°	45°

Die Winkelangaben sind bezogen auf eine mechanische Wellenumdrehung. Flankengenauigkeit der Signale R, S, T ±1°.

Empfohlenes Zubehör

Weitere Geräteausführungen und Zubehör → www.sick.com/CFS50

	Kurzbeschreibung	Тур	Artikelnr.	
Steckverbinder und Leitungen				
	Kopf A: Dose, JST, 8-polig, gerade Kopf B: Stecker, M23, 17-polig, gerade Leitung: Inkremental, ungeschirmt, 1 m	DSL-2317-G01MJB7	2071332	
	Kopf A: Dose, Klemmbox, 8-polig, gerade Kopf B: Stecker, M23, 17-polig, gerade Leitung: Inkremental, ungeschirmt, 1 m	DSL-2317-G01MJC7	2071331	

SICK AUF EINEN BLICK

SICK ist einer der führenden Hersteller von intelligenten Sensoren und Sensorlösungen für industrielle Anwendungen. Ein einzigartiges Produkt- und Dienstleistungsspektrum schafft die perfekte Basis für sicheres und effizientes Steuern von Prozessen, für den Schutz von Menschen vor Unfällen und für die Vermeidung von Umweltschäden.

Wir verfügen über umfassende Erfahrung in vielfältigen Branchen und kennen ihre Prozesse und Anforderungen. So können wir mit intelligenten Sensoren genau das liefern, was unsere Kunden brauchen. In Applikationszentren in Europa, Asien und Nordamerika werden Systemlösungen kundenspezifisch getestet und optimiert. Das alles macht uns zu einem zuverlässigen Lieferanten und Entwicklungspartner.

Umfassende Dienstleistungen runden unser Angebot ab: SICK LifeTime Services unterstützen während des gesamten Maschinenlebenszyklus und sorgen für Sicherheit und Produktivität.

Das ist für uns "Sensor Intelligence."

WELTWEIT IN IHRER NÄHE:

Ansprechpartner und weitere Standorte → www.sick.com

