

DBS60E-S4EC00S15

DBS60 Core

INKREMENTAL-ENCODER

Bestellinformationen

Тур	Artikelnr.
DBS60E-S4EC00S15	1074152

Weitere Geräteausführungen und Zubehör → www.sick.com/DBS60_Core

Abbildung kann abweichen

Technische Daten im Detail

Merkmale

Sonderprodukt	J .
Besonderheit	Stecker M12, 4-polig mit kundenspezifischer Pinbelegung
Standard-Referenzgerät	DBS60E-S4EC00010, 1073653

Performance

Impulse pro Umdrehung	10
Messschritt	≤ 90° elektrisch/Impulse pro Umdrehung
Messschrittabweichung	± 18° / Impulse pro Umdrehung
Fehlergrenzen	Messschrittabweichung x 3
Tastgrad	≤ 0,5 ± 5 %

Schnittstellen

Kommunikationsschnittstelle	Inkremental
Kommunikationsschnittstelle Detail	HTL / Push pull
Anzahl der Signal Kanäle	6 Kanal
Initialisierungszeit	< 5 ms ¹⁾
Ausgabefrequenz	+ 300 kHz ²⁾
Laststrom	≤ 30 mA, pro Kanal
Leistungsaufnahme	≤ 1 W (ohne Last)

¹⁾ Nach dieser Zeit können gültige Signale gelesen werden.

Elektrische Daten

Anschlussart	Stecker, M12, 4-polig, radial, Kundenspezifische PIN-Belegung
Versorgungsspannung	10 27 V

 $^{^{1)}}$ Kurzschluss gegenüber einem anderen Kanal US oder GND zulässig für maximal 30 s.

 $^{^{2)}}$ Bis 450 kHz auf Anfrage.

²⁾ Bei diesem Produkt handelt es sich um ein Standardprodukt und kein Sicherheitsbauteil im Sinne der Maschinenrichtlinie. Berechnung auf Basis nominaler Last der Bauteile, durchschnittlicher Umgebungstemperatur 40°C, Einsatzhäufigkeit 8760 h/a. Alle elektronischen Ausfälle werden als gefährliche Ausfälle angesehen. Nähere Informationen siehe Dokument Nr. 8015532.

Referenzsignal, Anzahl	1
Referenzsignal, Lage	90°, elektrisch, logisch verknüpft mit A und B
Verpolungsschutz	✓
Kurzschlussfestigkeit der Ausgänge	✓ ¹)
MTTF _d : Zeit bis zu gefährlichem Ausfall	500 Jahre (EN ISO 13849-1) 2)

 $^{^{1)}}$ Kurzschluss gegenüber einem anderen Kanal US oder GND zulässig für maximal 30 s.

Mechanische Daten

Mechanische Ausführung	Vollwelle, Klemmflansch	
Wellendurchmesser	10 mm	
Wellenlänge	19 mm	
Flanschart / Drehmomentstütze	Flansch mit 3 x M3 und 3 x M4	
Gewicht	+ 0,3 kg ¹⁾	
Material, Welle	Edelstahl	
Material, Flansch	Aluminium	
Material, Gehäuse	Aluminium	
Anlaufdrehmoment	+ 1,2 Ncm (+20 °C)	
Betriebsdrehmoment	1,1 Ncm (+20 °C)	
Zulässige Wellenbelastung radial/axial	100 N (radial) ²⁾ 50 N (axial) ²⁾	
Betriebsdrehzahl	6.000 min ^{-1 3)}	
Maximale Betriebsdrehzahl	9.000 min ^{-1 4)}	
Trägheitsmoment des Rotors	33 gcm ²	
Lagerlebensdauer	3,6 x 10 ⁹ Umdrehungen	
Winkelbeschleunigung	$\leq 500.000 \text{ rad/s}^2$	

 $^{^{1)}\,\}mbox{Bezogen}$ auf Encoder mit Steckeranschluss oder Leitung mit Steckeranschluss.

Umgebungsdaten

EMV	Nach EN 61000-6-2 und EN 61000-6-3
Schutzart	IP67, gehäuseseitig (nach IEC 60529) ¹⁾ IP65, wellenseitig (nach IEC 60529)
Zulässige relative Luftfeuchte	90 % (Betauung der optischen Abtastung nicht zulässig)
Betriebstemperaturbereich	-20 °C +85 °C ²⁾
Lagerungstemperaturbereich	-40 °C +100 °C, ohne Verpackung
Widerstandsfähigkeit gegenüber Schocks	250 g, 3 ms (nach EN 60068-2-27)
Widerstandsfähigkeit gegenüber Vibration	30 g, 10 Hz 2.000 Hz (nach EN 60068-2-6)

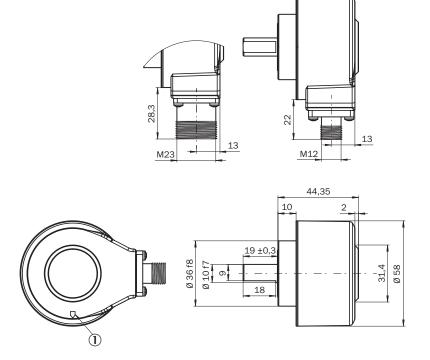
¹⁾ Bei montiertem Gegenstecker.

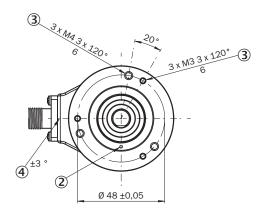
²⁾ Bei diesem Produkt handelt es sich um ein Standardprodukt und kein Sicherheitsbauteil im Sinne der Maschinenrichtlinie. Berechnung auf Basis nominaler Last der Bauteile, durchschnittlicher Umgebungstemperatur 40°C, Einsatzhäufigkeit 8760 h/a. Alle elektronischen Ausfälle werden als gefährliche Ausfälle angesehen. Nähere Informationen siehe Dokument Nr. 8015532.

 $^{^{\}rm 2)}$ Höhere Werte unter Einschränkung der Lagerlebensdauer möglich.

³⁾ Eigenerwärmung von 3,2 K pro 1.000 min⁻¹ bei der Auslegung des Betriebstemperaturbereichs beachten.

⁴⁾ Maximale Geschwindigkeit, welche nicht zu einer mechanischen Beschädigung des Encoders führt. Einfluss auf die Lebensdauer und die Signalgüte ist möglich. Bitte beachten Sie die maximale Ausgabefrequenz.

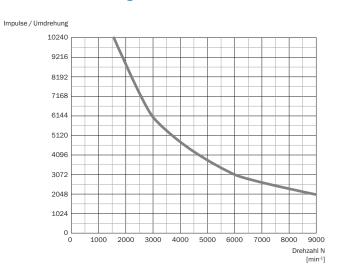

²⁾ Diese Werte beziehen sich auf alle mechanischen Ausführungen inklusive den empfohlenen Zubehörteilen, sofern nicht anders angegeben.


Klassifikationen

ECI@ss 5.0	27270501
ECI@ss 5.1.4	27270501
ECI@ss 6.0	27270590
ECI@ss 6.2	27270590
ECI@ss 7.0	27270501
ECI@ss 8.0	27270501
ECI@ss 8.1	27270501
ECI@ss 9.0	27270501
ECI@ss 10.0	27270501
ECI@ss 11.0	27270501
ETIM 5.0	EC001486
ETIM 6.0	EC001486
ETIM 7.0	EC001486
UNSPSC 16.0901	41112113

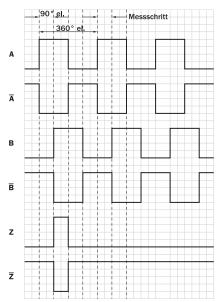
Maßzeichnung (Maße in mm)

Vollwelle Ø 10 mm, Klemmflansch, Steckeranschluss



- ① Nullimpuls-Markierung auf Gehäuse
- Nullimpuls-Markierung auf Flansch
- 3 Tiefe
- 4 Toleranz Stecker zu Lochbild

PIN-Belegung


PIN	Signal TTL/HTL	Beschreibung
1	+Us	+Us
2	В	Signalleitung
3	GND	Masseanschluss des Encoders
4	А	Signalleitung

Drehzahlbetrachtung

Signalausgänge

Signalausgänge für elektrische Schnittstellen TTL und HTL

Cw mit Blick auf die Encoderwelle in Richtung "A", vergleiche Maßzeichnung.

DBS60E-S4EC00S15 | DBS60 Core

INKREMENTAL-ENCODER

Versorgungsspannung	Ausgang
4,5 V 5,5 V	πι
10 V 30 V	πL
10 V 27 V	HTL
4,5 V 30 V	TTL/HTL universal
4,5 V 30 V	ΠL

SICK AUF EINEN BLICK

SICK ist einer der führenden Hersteller von intelligenten Sensoren und Sensorlösungen für industrielle Anwendungen. Ein einzigartiges Produkt- und Dienstleistungsspektrum schafft die perfekte Basis für sicheres und effizientes Steuern von Prozessen, für den Schutz von Menschen vor Unfällen und für die Vermeidung von Umweltschäden.

Wir verfügen über umfassende Erfahrung in vielfältigen Branchen und kennen ihre Prozesse und Anforderungen. So können wir mit intelligenten Sensoren genau das liefern, was unsere Kunden brauchen. In Applikationszentren in Europa, Asien und Nordamerika werden Systemlösungen kundenspezifisch getestet und optimiert. Das alles macht uns zu einem zuverlässigen Lieferanten und Entwicklungspartner.

Umfassende Dienstleistungen runden unser Angebot ab: SICK LifeTime Services unterstützen während des gesamten Maschinenlebenszyklus und sorgen für Sicherheit und Produktivität.

Das ist für uns "Sensor Intelligence."

WELTWEIT IN IHRER NÄHE:

Ansprechpartner und weitere Standorte → www.sick.com

