

DBS60E-TBZZ00S30

DBS60 Core

INKREMENTAL-ENCODER

Abbildung kann abweichen

Bestellinformationen

Тур	Artikelnr.
DBS60E-TBZZ00S30	1078426

Weitere Geräteausführungen und Zubehör → www.sick.com/DBS60_Core

Technische Daten im Detail

Merkmale

Sonderprodukt	✓
Besonderheit	Kundenspezifische Leiterplatten mit 16 Nullimpuls Positionen Leitung, 8-adrig, universal, 6 m mit USB-Anschluss, A-Code, kundenspezifische Pinbelegung
Standard-Referenzgerät	DBS60E-TBEK01000, 1072396

Performance

Impulse pro Umdrehung	1.024
Messschritt	≤ 90° elektrisch/Impulse pro Umdrehung
Messschrittabweichung	± 18° / Impulse pro Umdrehung
Fehlergrenzen	Messschrittabweichung x 3
Tastgrad	≤ 0,5 ± 5 %

Schnittstellen

Kommunikationsschnittstelle	Inkremental	
Kommunikationsschnittstelle Detail	HTL / Push pull	
Anzahl der Signal Kanäle	6 Kanal	
Initialisierungszeit	< 5 ms ¹⁾	
Ausgabefrequenz	+ 300 kHz ²⁾	
Laststrom	≤ 30 mA, pro Kanal	
Leistungsaufnahme	≤ 1 W (ohne Last)	

 $^{^{1)}}$ Nach dieser Zeit können gültige Signale gelesen werden.

Elektrische Daten

Anschlussart	Leitung, 8-adrig, mit USB-Anschluss, universal, 6 m, A-kodiert ¹⁾ Kundenspezifische PIN-Belegung	
Versorgungsspannung	10 27 V	
Referenzsignal, Anzahl	1	
Referenzsignal, Lage	180°, elektrisch, logisch verknüpft mit A und B	

¹⁾ Der universelle Leitungsanschluss ist so positioniert, dass eine knickfreie Verlegung in radialer oder axialer Richtung möglich ist.

²⁾ Bis 450 kHz auf Anfrage.

 $^{^{2)}\,\}mathrm{Kurzschluss}$ gegenüber einem anderen Kanal US oder GND zulässig für maximal 30 s.

³⁾ Bei diesem Produkt handelt es sich um ein Standardprodukt und kein Sicherheitsbauteil im Sinne der Maschinenrichtlinie. Berechnung auf Basis nominaler Last der Bauteile, durchschnittlicher Umgebungstemperatur 40°C, Einsatzhäufigkeit 8760 h/a. Alle elektronischen Ausfälle werden als gefährliche Ausfälle angesehen. Nähere Informationen siehe Dokument Nr. 8015532.

Verpolungsschutz	✓
Kurzschlussfestigkeit der Ausgänge	✓ ²⁾
MTTF _d : Zeit bis zu gefährlichem Ausfall	500 Jahre (EN ISO 13849-1) 3)

¹⁾ Der universelle Leitungsanschluss ist so positioniert, dass eine knickfreie Verlegung in radialer oder axialer Richtung möglich ist.

Mechanische Daten

Mechanische Ausführung	Durchsteckhohlwelle, Klemmung vorne	
Wellendurchmesser	8 mm	
Flanschart / Drehmomentstütze	Drehmomentstütze 2-seitig, Langloch, Lochkreis 63 mm - 83 mm	
Gewicht	$+ 0.25 \text{ kg}^{-1)}$	
Material, Welle	Edelstahl	
Material, Flansch	Aluminium	
Material, Gehäuse	Aluminium	
Material, Leitung	PVC	
Anlaufdrehmoment	+ 0,5 Ncm (+20 °C)	
Betriebsdrehmoment	0,4 Ncm (+20 °C)	
Zulässige Wellenbewegung axial statisch/dynamisch	± 0,5 mm / ± 0,2 mm	
Zulässige Wellenbewegung radial statisch/dynamisch	± 0,3 mm / ± 0,1 mm	
Betriebsdrehzahl	6.000 min ^{-1 2)}	
Maximale Betriebsdrehzahl	9.000 min ^{-1 3)}	
Trägheitsmoment des Rotors	50 gcm ²	
Lagerlebensdauer	3,6 x 10 ⁹ Umdrehungen	
Winkelbeschleunigung	≤ 500.000 rad/s²	

 $^{^{1)}}$ Bezogen auf Encoder mit Steckeranschluss oder Leitung mit Steckeranschluss.

Umgebungsdaten

EMV	Nach EN 61000-6-2 und EN 61000-6-3	
Schutzart	IP65, gehäuseseitig (nach IEC 60529) ¹⁾ IP65, wellenseitig (nach IEC 60529)	
Zulässige relative Luftfeuchte	90 % (Betauung der optischen Abtastung nicht zulässig)	
Betriebstemperaturbereich	-20 °C +85 °C ²⁾	
Lagerungstemperaturbereich	-40 °C +100 °C, ohne Verpackung	
Widerstandsfähigkeit gegenüber Schocks	250 g, 3 ms (nach EN 60068-2-27)	
Widerstandsfähigkeit gegenüber Vibration	30 g, 10 Hz 2.000 Hz (nach EN 60068-2-6)	

 $^{^{1)}}$ Bei montiertem Gegenstecker.

 $^{^{2)}}$ Kurzschluss gegenüber einem anderen Kanal US oder GND zulässig für maximal 30 s.

³⁾ Bei diesem Produkt handelt es sich um ein Standardprodukt und kein Sicherheitsbauteil im Sinne der Maschinenrichtlinie. Berechnung auf Basis nominaler Last der Bauteile, durchschnittlicher Umgebungstemperatur 40°C, Einsatzhäufigkeit 8760 h/a. Alle elektronischen Ausfälle werden als gefährliche Ausfälle angesehen. Nähere Informationen siehe Dokument Nr. 8015532.

²⁾ Eigenerwärmung von 2,6 K pro 1.000 min⁻¹ bei der Auslegung des Betriebstemperaturbereichs beachten.

³⁾ Maximale Geschwindigkeit, welche nicht zu einer mechanischen Beschädigung des Encoders führt. Einfluss auf die Lebensdauer und die Signalgüte ist möglich. Bitte beachten Sie die maximale Ausgabefrequenz.

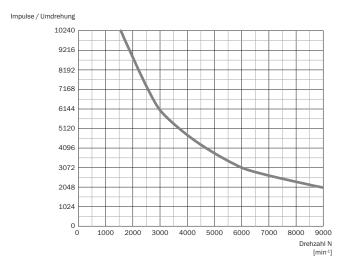
²⁾ Diese Werte beziehen sich auf alle mechanischen Ausführungen inklusive den empfohlenen Zubehörteilen, sofern nicht anders angegeben.

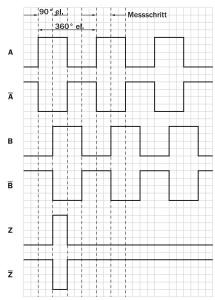
DBS60E-TBZZ00S30 | DBS60 Core

INKREMENTAL-ENCODER

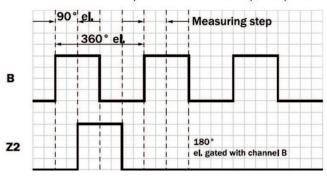
Klassifikationen

ECI@ss 5.0	27270501
ECI@ss 5.1.4	27270501
ECI@ss 6.0	27270590
ECI@ss 6.2	27270590
ECI@ss 7.0	27270501
ECI@ss 8.0	27270501
ECI@ss 8.1	27270501
ECI@ss 9.0	27270501
ECI@ss 10.0	27270501
ECI@ss 11.0	27270501
ETIM 5.0	EC001486
ETIM 6.0	EC001486
ETIM 7.0	EC001486
UNSPSC 16.0901	41112113


PIN-Belegung


USB connector	TTI/HTL signal	Explanation
1	+U _S	Supply voltage (volt-free to housing)
2	В	Signal cable
3	Z	Signal cable
4	GND	Ground connection of the encoder
		Shield connected to housing on side
		of encoder. Connected to ground on
Shield	Shield	side of control.

Drehzahlbetrachtung



Signalausgänge

Signalausgänge für elektrische Schnittstellen TTL und HTL

Cw mit Blick auf die Encoderwelle in Richtung "A", vergleiche Maßzeichnung. Width of the zero pulse in relation to a pulse period.

DBS60E-TBZZ00S30 | DBS60 Core

INKREMENTAL-ENCODER

Versorgungsspannung	Ausgang
4,5 V 5,5 V	ΠL
10 V 30 V	ΠL
10 V 27 V	HTL
4,5 V 30 V	TTL/HTL universal
4,5 V 30 V	ΠL

SICK AUF EINEN BLICK

SICK ist einer der führenden Hersteller von intelligenten Sensoren und Sensorlösungen für industrielle Anwendungen. Ein einzigartiges Produkt- und Dienstleistungsspektrum schafft die perfekte Basis für sicheres und effizientes Steuern von Prozessen, für den Schutz von Menschen vor Unfällen und für die Vermeidung von Umweltschäden.

Wir verfügen über umfassende Erfahrung in vielfältigen Branchen und kennen ihre Prozesse und Anforderungen. So können wir mit intelligenten Sensoren genau das liefern, was unsere Kunden brauchen. In Applikationszentren in Europa, Asien und Nordamerika werden Systemlösungen kundenspezifisch getestet und optimiert. Das alles macht uns zu einem zuverlässigen Lieferanten und Entwicklungspartner.

Umfassende Dienstleistungen runden unser Angebot ab: SICK LifeTime Services unterstützen während des gesamten Maschinenlebenszyklus und sorgen für Sicherheit und Produktivität.

Das ist für uns "Sensor Intelligence."

WELTWEIT IN IHRER NÄHE:

Ansprechpartner und weitere Standorte → www.sick.com

