

WL9LGC-3P2452A71

ФОТОЭЛЕКТРИЧЕСКИЕ ДАТЧИКИ В СТАНДАРТНОМ КОРПУСЕ

Информация для заказа

Тип	Артикул
WL9LGC-3P2452A71	1080956

Другие варианты исполнения устройства и аксессуары → www.sick.com/W9

Изображения могут отличаться от оригинала

Подробные технические данные

Характеристики

Принцип датчика/ обнаружения	Датчик с отражением от рефлектора, Автоколлимация
Размеры (Ш х В х Г)	12,2 mm x 52,2 mm x 23,6 mm
Форма корпуса (выход света)	Прямоугольный
Схема расположения отверстий	M3
Дистанция работы, макс.	0 m 3,5 m ^{1) 2)}
Расстояние срабатывания	0 m 2,2 m ^{1) 2)}
Вид излучения	Видимый красный свет
источник излучения	Лазер ³⁾
Размеры светового пятна (расстояние)	Ø 0,4 mm (60 mm)
Длина волны	650 nm
Класс лазера	1 (IEC 60825-1 / CDRH 21 CFR 1040.10 & 1040.11)
Настройка	IO-Link Кнопка настройки
Диагностика	Мониторинг загрязнения устройства, качество обучения

 $^{^{1)}}$ Отражающая плёнка REF-AC1000.

²⁾ Для надежной работы мы рекомендуем применение отражающей пленки REF-AC1000 или отражателей на ее основе, таких как P41F, PLV14-A, PLH25-M12 или PLH25-D12. Применение отражателей с трехгранной структурой большого размера может быть рекомендовано только после получения подробной информации о решаемой задаче автоматизации.

 $^{^{3)}}$ Средний срок службы 50 000 ч при T_U = +25 °C.

Конфигурация контакта 2	Внешний вход, вход для обучения, вход передатчик выкл., выход детекции, логический выход, Выход сигнала тревоги загрязнения устройства
AutoAdapt	✓
Специальные случаи применения	Обнаружение объектов маленького размера, Обнаружение прозрачных объектов

¹⁾ Отражающая плёнка REF-AC1000.

Механика/электроника

Напряжение питания	10 V DC 30 V DC ¹⁾
Остаточная пульсация	< 5 V _{ss} ²⁾
Потребление тока	30 mA ³⁾
Переключающий выход	PNP ⁴⁾
Функция выходного сигнала	Комплементарный
Тип переключения	CBETAO/TEMHO ⁴⁾
Выходной ток I _{макс.}	≤ 100 mA
Оценка	≤ 0,5 ms ⁵⁾
Оценка Q/на контакте 2	300 μs 450 μs ^{5) 6)}
Частота переключения	1.000 Hz ⁷⁾
Частота переключения Q/на контакте 2	≤ 1.000 Hz ⁸⁾
Вид подключения	Разъем М12, 4-конт.
Схемы защиты	A ⁹⁾ B ¹⁰⁾ C ¹¹⁾
Класс защиты	III
Bec	13 g
Поляризационный фильтр	✓
IO-Link	✓
Материал корпуса	Пластик, VISTAL®
Материал, оптика	Пластик, РММА
Тип защиты	IP66

 $^{^{1)}}$ Предельные значения при работе в защищенной от короткого замыкания сети макс. 8 A.

²⁾ Для надежной работы мы рекомендуем применение отражающей пленки REF-AC1000 или отражателей на ее основе, таких как P41F, PLV14-A, PLH25-M12 или PLH25-D12. Применение отражателей с трехгранной структурой большого размера может быть рекомендовано только после получения подробной информации о решаемой задаче автоматизации.

 $^{^{3)}}$ Средний срок службы 50 000 ч при T_U = +25 °C.

 $^{^{2)}}$ Не допускается превышение или занижение допуска $\mathsf{U}_{\mathsf{V}}.$

³⁾ Без нагрузки.

 $^{^{4)}}$ Q = «CBET Λ O».

 $^{^{5)}}$ Продолжительность сигнала при омической нагрузке.

 $^{^{6)}}$ Действительно для Q\на конт. 2, если настроено через программное обеспечение.

⁷⁾ При соотношении светло/темно 1:1.

⁸⁾ При соотношении «светло/темно» 1:1, действительно для Q\на конт. 2, если настроено через программное обеспечение.

 $^{^{9)}}$ A = подключения U_V с защитой от переполюсовки.

 $^{^{10)}}$ B = входы и выходы с защитой от инверсии полярности.

 $^{^{11)}}$ C = подавление импульсных помех.

 $^{^{12)}}$ Начиная с T_u = 50 °C допустимы макс. напряжение питания V_{max} = 24 В и макс. выходной ток I_{max} = 50 мА.

 $^{^{13)}}$ Работа при температуре ниже Tu = $^{-10}$ °C возможна, если датчик уже включен при Tu > $^{-10}$ °C, после этого охлаждается и не отсоединяется от питающего напряжения. Включение ниже Tu = $^{-10}$ °C недопустимо.

ФОТОЭЛЕКТРИЧЕСКИЕ ДАТЧИКИ В СТАНДАРТНОМ КОРПУСЕ

	IP67 IP69K
Специальное исполнение	Обнаружение прозрачных объектов
Диапазон температур при работе	-10 °C +50 °C
Диапазон рабочих температур, расширенный	-30 °C +55 °C ^{12) 13)}
Диапазон температур при хранении	-30 °C +70 °C
№ файла UL	NRKH.E181493
Стабильность повторяемости Q/на контакте 2:	150 μs ⁶⁾

¹⁾ Предельные значения при работе в защищенной от короткого замыкания сети макс. 8 А.

Параметры техники безопасности

MTTF _D	655 лет (EN ISO 13849-1) ¹⁾
-------------------	--

¹⁾ Расчет по методу Parts Count.

Интерфейс связи

Интерфейс связи	IO-Link V1.1
Коммуникационный интерфейс, детальное описание	COM2 (38,4 kBaud)
Время цикла	2,3 ms
Длина технологических данных	16 Bit
Структура технологических данных	Бит 0 = дискретный сигнал Q_{L1} Бит 1 = дискретный сигнал Q_{L2} Бит $2 \dots 15$ = измеряемое значение
VendorID	26
DeviceID HEX	0x80011A
DeviceID DEC	8388890

Smart Task

Обозначение интеллектуальной задачи	Счетчик + устранение дребезга
Логическая функция	Прямой ОКНО Гистерезис

¹⁾ SIO Direct: работа датчика в стандартном режиме I/O без коммуникации IO-Link и без применения логических и временных параметров датчика (настройка «прямой»/«неактивный»).

 $^{^{2)}}$ Не допускается превышение или занижение допуска $\mathsf{U}_\mathsf{v}.$

 $^{^{3)}}$ Без нагрузки.

 $^{^{4)}}$ Q = «CBET Λ O».

⁵⁾ Продолжительность сигнала при омической нагрузке.

 $^{^{6)}}$ Действительно для Q $\$ на конт. 2, если настроено через программное обеспечение.

 $^{^{7)}}$ При соотношении светло/темно 1:1.

⁸⁾ При соотношении «светло/темно» 1:1, действительно для Q\на конт. 2, если настроено через программное обеспечение.

 $^{^{9)}}$ A = подключения U_V с защитой от переполюсовки.

 $^{^{10)}}$ B = входы и выходы с защитой от инверсии полярности.

 $^{^{11)}}$ C = подавление импульсных помех.

 $^{^{12)}}$ Начиная с T_{II} = 50 °C допустимы макс. напряжение питания V_{max} = 24 В и макс. выходной ток I_{max} = 50 мА.

 $^{^{13)}}$ Работа при температуре ниже Tu = $^{-10}$ °C возможна, если датчик уже включен при Tu > $^{-10}$ °C, после этого охлаждается и не отсоединяется от питающего напряжения. Включение ниже Tu = $^{-10}$ °C недопустимо.

²⁾ SIO Logic: работа датчика в стандартном режиме I/O без коммуникации IO-Link. Применение логических и временных параметров датчика, дополнительные функции автоматизации.

³⁾ IOL: работа датчика с полной коммуникацией IO-Link и применением логических, временных параметров и параметров функций автоматизации.

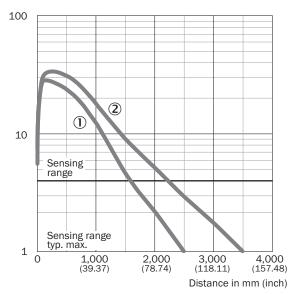
Функция таймера	Деактивирован Задержка включения Задержка выключения Замедление включения и выключения Импульс (One Shot)
Инвертор	Да
Максимальная частота счёта	SIO Direct: -1 SIO Logic: 1000 Hz $^{2)}$ IOL: 900 Hz $^{3)}$
Длительность сброса	SIO Direct: SIO Logic: 1,5 ms IOL: 1,5 ms
Минимальное время между двумя событиями процесса	SIO Direct: SIO Logic: 450 µs IOL: 500 µs
Время устранения дребезга, макс.	SIO Direct: SIO Logic: 30.000 ms IOL: 30.000 ms
Дискретный сигнал Q _{L1}	Устройство переключения выходного сигнала (в зависимости от установленного предельного значения)
Дискретный сигнал Q _{L2}	Устройство переключения выходного сигнала (в зависимости от установленного предельного значения)
Измеряемое значение	Численное значение

¹⁾ SIO Direct: работа датчика в стандартном режиме I/O без коммуникации IO-Link и без применения логических и временных параметров датчика (настройка

Классификации

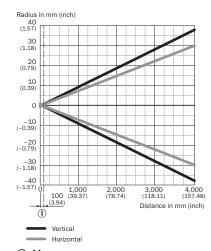
ECI@ss 5.0	27270902
ECI@ss 5.1.4	27270902
ECI@ss 6.0	27270902
ECI@ss 6.2	27270902
ECI@ss 7.0	27270902
ECI@ss 8.0	27270902
ECI@ss 8.1	27270902
ECI@ss 9.0	27270902
ECI@ss 10.0	27270902
ECI@ss 11.0	27270902
ETIM 5.0	EC002717
ETIM 6.0	EC002717
ETIM 7.0	EC002717
UNSPSC 16.0901	39121528

[«]прямой»/«неактивный»).


2) SIO Logic: работа датчика в стандартном режиме I/O без коммуникации IO-Link. Применение логических и временных параметров датчика, дополнительные функции автоматизации.

³⁾ IOL: работа датчика с полной коммуникацией IO-Link и применением логических, временных параметров и параметров функций автоматизации.

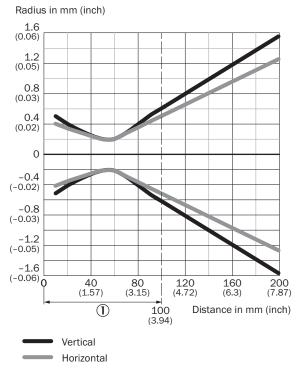
Схема соединений


Cd-367

Характеристика

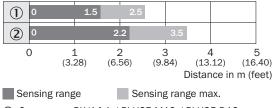
- ① Отражатель PLV14-A / PLH25-M12 / PLH25-D12
- ② Отражатель P41F / отражающая плёнка REF-AC1000

Размер светового пятна



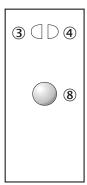
Dimensions in mm (inch)

Sensing range	Vertical	Horizontal
60 mm	0.4	0.4
2.36)	(0.02)	(0.02)
200 mm	3.2	2.4
7.87)	(0.13)	(0.09)
2,000 mm	40	30
78,74)	(1.57)	(0.18)
3,500 mm	60	50
137.80)	(2.36)	(1.97)


① Мин. расстояние между датчиком и отражателем

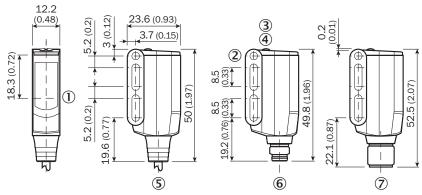
Размер светового пятна (детальный вид)

① Мин. расстояние между датчиком и отражателем


Диаграмма расстояний срабатывания

- ① Отражатель PLV14-A / PLH25-M12 / PLH25-D12
- ② Отражатель P41F / отражающая плёнка REF-AC1000

Варианты настройки


Кнопка Teach-in для простого обучения

- ③ СД-индикатор желтый: состояние приема света
- ④ СД-индикатор зеленый: индикация питания
- ® Кнопка настройки

Габаритный чертеж (Размеры, мм)

WL9L-3

- ① Середина оптической оси передатчика и приемника
- ② Сквозное отверстие МЗ (ø 3,1 мм)
- ③ СД-индикатор желтый: состояние приема света
- ④ СД-индикатор зеленый: индикация питания
- ⑤ Кабель или кабель со штекером
- © Разъем М8, 4-конт.
- ⑦ Разъем М12, 4-конт.

Рекомендуемые аксессуары

Другие варианты исполнения устройства и аксессуары → www.sick.com/W9

	Краткое описание	Тип	Артикул
Отражатели			
	Подходит для лазерных датчиков, самоклеящийся, нарезается в размер, соблюдать указания по юстировке, 56,3 mm x 56,3 mm, самоклеящийся	REF-AC1000-56	4063030

	Краткое описание	Тип	Артикул	
Разъемы и кабели				
Wes .	Головка А: Разъем, М12, 4-контактный, прямой Головка В: - Кабель: без экрана	STE-1204-G	6009932	
F	Головка А: разъём "мама", М12, 4-контактный, прямой, А-кодированный Головка В: свободный конец провода Кабель: Кабель датчик/пускатель, РVC, без экрана, 5 m	YF2A14- 050VB3XLEAX	2096235	

Рекомендуемые сервисы

Дополнительные услуги → www.sick.com/W9

	Тип	Артикул
Function Block Factory		
• Описание: Function Block Factory поддерживает стандартные программируемые логические контроллеры (ПЛК) различных производителей, таких как Siemens, Beckhoff, Rockwell Automation и В & R. Более подробную информацию о FBF можно найти здесь .	Function Block Factory	По запросу

ОБЗОР КОМПАНИИ SICK

Компания SICK – ведущий производитель интеллектуальных датчиков и комплексных решений для промышленного применения. Уникальный спектр продукции и услуг формирует идеальную основу для надежного и эффективного управления процессами, защиты людей от несчастных случаев и предотвращения нанесения вреда окружающей среде.

Мы обладаем солидным опытом в самых разных отраслях и знаем все о ваших технологических процессах и требованиях. Поэтому, благодаря интеллектуальным датчикам, мы в состоянии предоставить именно то, что нужно нашим клиентам. В центрах прикладного применения в Европе, Азии и Северной Америке системные решения тестируются и оптимизируются под нужды заказчика. Все это делает нас надежным поставщиком и партнером по разработке.

Всеобъемлющий перечень услуг придает завершенность нашему ассортименту: SICK LifeTime Services оказывает поддержку на протяжении всего жизненного цикла оборудования и гарантирует безопасность и производительность.

Вот что для нас значит термин «Sensor Intelligence».

РЯДОМ С ВАМИ В ЛЮБОЙ ТОЧКЕ МИРА:

Контактные лица и представительства → www.sick.com

