

AFM60I-S1RC262144

AFS/AFM60 Inox

ABSOLUTE ENCODERS

Ordering information

Туре	Part no.
AFM60I-S1RC262144	1083992

Other models and accessories → www.sick.com/AFS_AFM60_Inox

Illustration may differ

Detailed technical data

Performance

Max. resolution (number of steps per revolution x number of revolutions)	18 bit x 12 bit (262,144 x 4,096)
Error limits G	0.03° ¹⁾
Repeatability standard deviation $\boldsymbol{\sigma_{r}}$	0.002° ²⁾

¹⁾ In accordance with DIN ISO 1319-1, position of the upper and lower error limit depends on the installation situation, specified value refers to a symmetrical position, i.e. deviation in upper and lower direction is the same.

Interfaces

Communication interface	SSI
Communication Interface detail	SSI + incremental
Initialization time	50 ms ¹⁾
Position forming time	< 1 µs
SSI	
Code type	Gray
Code sequence parameter adjustable	CW/CCW (V/R)
Clock frequency	2 MHz ²⁾
Set (electronic adjustment)	H-active (L = $0 - 3 \text{ V}$, H = $4,0 - U_s \text{ V}$)
CW/CCW (counting sequence when turning)	L-active (L = 0 - 1,5 V, H = 2,0 - Us V)
Incremental	
Pulses per revolution	1/4 of number of SSI steps per revolution
Output frequency	≤ 820 kHz
Load current	≤ 30 mA

 $^{^{1)}}$ Valid positional data can be read once this time has elapsed.

²⁾ In accordance with DIN ISO 55350-13; 68.3% of the measured values are inside the specified area.

 $^{^{2)}\,\}mbox{SSI}$ max. clock frequency 2 MHz, and min. LOW level (Clock+): 500 ns.

Electrical data

Connection type	Male connector, M12, 12-pin, radial
Supply voltage	4.5 32 V DC
	Male connector, M12, 12-pin
Output frequency	≤ 820 kHz
Power consumption	≤ 0.7 W (without load)
Reverse polarity protection	✓
MTTFd: mean time to dangerous failure	250 years ¹⁾

¹⁾ This product is a standard product and does not constitute a safety component as defined in the Machinery Directive. Calculation based on nominal load of components, average ambient temperature 40°C, frequency of use 8760 h/a. All electronic failures are considered hazardous. For more information, see document no. 8015532.

Mechanical data

Mechanical design	Solid shaft, Servo flange
Shaft diameter	6 mm
Shaft length	10 mm
Weight	$0.5~{ m kg}^{~1)}$
Shaft material	Stainless steel V2A
Flange material	Stainless steel V2A
Housing material	Stainless steel V2A
Start up torque	1 Ncm
Operating torque	0.5 Ncm
Permissible Load capacity of shaft	80 N / radial 40 N / axial
Moment of inertia of the rotor	6.2 gcm ²
Bearing lifetime	3.0 x 10^9 revolutions
Angular acceleration	$\leq 500,000 \text{ rad/s}^2$
Operating speed	≤ 9,000 min ^{-1 2)}

 $^{^{1)}}$ Relates to devices with male connector connection.

Ambient data

EMC	According to EN 61000-6-2 and EN 61000-6-3 ¹⁾	
Enclosure rating	IP67, shaft side IP67, housing side, male connector connection ²⁾ IP67, housing side, cable connection	
Permissible relative humidity	90 % (condensation of the optical scanning not permitted)	
Operating temperature range	-40 °C +100 °C ³⁾ -30 °C +100 °C ⁴⁾	
Storage temperature range	-40 °C +100 °C, without package	
Resistance to shocks	100 g, 6 ms (according to EN 60068-2-27)	

 $^{^{1)}}$ EMC according to the standards quoted is achieved if shielded cables are used.

 $^{^{2)}}$ Allow for self-heating of 3.3 K per 1,000 rpm when designing the operating temperature range.

²⁾ With mating connector fitted.

 $^{^{}m 3)}$ Stationary position of the cable.

⁴⁾ Flexible position of the cable.

AFM60I-S1RC262144 | AFS/AFM60 Inox

ABSOLUTE ENCODERS

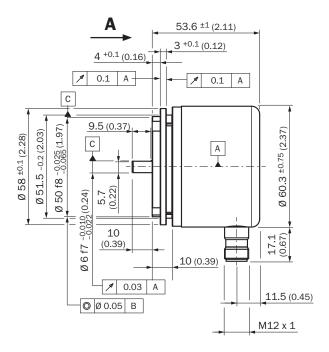
Resistance to vibration

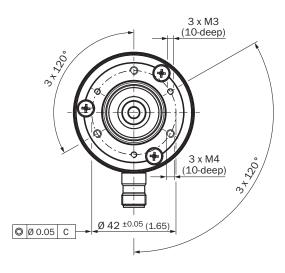
10 g, 10 Hz ... 2,000 Hz (according to EN 60068-2-6)

Classifications

ECI@ss 5.0	27270502
ECI@ss 5.1.4	27270502
ECI@ss 6.0	27270590
ECI@ss 6.2	27270590
ECI@ss 7.0	27270502
ECI@ss 8.0	27270502
ECI@ss 8.1	27270502
ECI@ss 9.0	27270502
ECI@ss 10.0	27270502
ECI@ss 11.0	27270502
ETIM 5.0	EC001486
ETIM 6.0	EC001486
ETIM 7.0	EC001486
UNSPSC 16.0901	41112113

 $^{^{1)}\,\}mathrm{EMC}$ according to the standards quoted is achieved if shielded cables are used.


²⁾ With mating connector fitted.

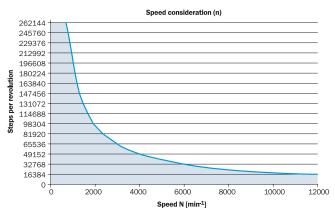

 $^{^{}m 3)}$ Stationary position of the cable.

⁴⁾ Flexible position of the cable.

Dimensional drawing (Dimensions in mm (inch))

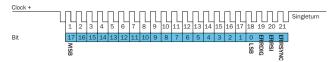
Solid shaft, servo flange

PIN assignment


 ${\tt M12\ male\ connector,\ 12-pin\ and\ cable\ connection,\ cable\ 12-wire,\ SSI/Gray\ +\ incremental}$

View to the connector M12 12-pin fitted to the encoder body

PIN, 12-pin, M12 connector	Color of wires, cable outlet	Signal	Explanation	
1	Orange/black	CW/CCW	Counting sequence when turning	
2	White	Data+	Interface signals	
3	Brown	Data-	Interface signals	
4	Violet	Clock-	Interface signals	
5	Red	+U _s	Supply voltage	
6	Gray	A	Signal line	
7	Green	Ā	Signal line	
8	Pink	В	Signal line	
9	Black	B	Signal line	
10	Orange	SET	Electronic adjustment	
11	Yellow	Clock+	Interface signals	
12	Blue	GND	Ground connection	
		Screen	Screen connected to housing on side of encoder. Connected to ground on side of control.	


Maximum revolution range

The maximum speed is also dependent on the shaft type.

Diagrams

SSI data format singleturn

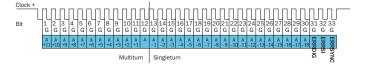
Bit 1-18: Position Bits

- · LSB: Least significant Bit
- · MSB: Most significant Bit

Bit 19-21: Error Bits

- ERRDIG: Failure message about speed. If this failure occurs during the position building procedure it will be indicated by the ERRDIG-Bit.
- ERRSI: Light source monitoring failure.
- ERRSYNC: Contamination of the disc or scanning system. During the determination of the position, an error has occurred since the last SSI transmission. The error bit will be deleted during the next data transmission.

The evaluation of the error bits has to be realized in the PLC.

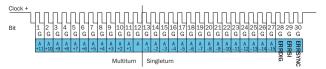

The provided error bits don't have to be used by the PLC compulsorily.

Example

If the resolution of the absolute encoder is set on 13 bits, 16 bits are provided by the encoder: 13 data bits and 3 error bits. If the PLC is not able to evaluate the error bits, the PLC has to be set on a resolution of 13 bits. Then the error bits have to be masked out by the PLC.

SSI data format multiturn

30 Bits



Bit 1-12: Position Bits multiturn

Bit 13-30: Position Bits singleturn

Bit 31-33: Error Bits

27 Bits

Bit 1–12: Position Bits multiturn
Bit 13–27: Position Bits singleturn

Bit 28-30: Error Bits

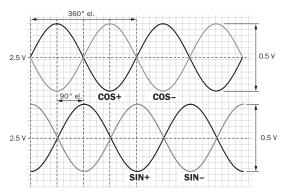
Error Bits

- ERRDIG: Failure message about speed. If this failure occurs during the position building procedure it will be indicated by the ERRDIG-Bit.
- · ERRSI: Light source monitoring failure.
- ERRSYNC: Contamination of the disc or scanning system. During the determination of the position, an error has occurred since the last SSI transmission. The error bit will be deleted during the next data transmission.

The evaluation of the error bits has to be realized in the PLC.

The provided error bits don't have to be used by the PLC compulsorily. The multiturn resolution is fixed on 12 bits.

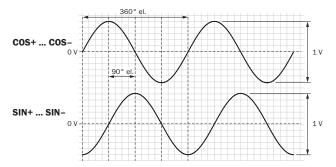
Example


If the resolution of the absolute encoder is set on 27 bits, 30 bits are provided by the encoder: 27 data bits and 3 error bits. If the PLC is not able to evaluate the error bits, the PLC has to be set on a resolution of 27 bits. Then the error bits have to be masked out by the PLC.

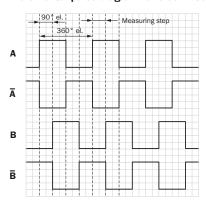
Electrical interfaces sine 0.5 V

Power supply	Output
4.5 5.5 V	Sine 0.5 V _{pp}

Signal **before** differential generation at load 120 Ω at U $_{\rm S}$ = 5 V


Signal diagram for clockwise rotation of the shaft looking in direction "A" (shaft)

Interface signals Sin, Sin, Cos, Cos	Signal before differential generation at load 120 $\boldsymbol{\Omega}$	Signal offset
Analog differential	0.5 V _{pp} ± 20 %	2.5 V ± 10 %


Signal after differential generation at load 120 Ω at U_s = 5 V

Signal diagram for clockwise rotation of the shaft looking in direction "A" (shaft)

Electrical interfaces HTL/TTL

Incremental pulse diagram for clockwise rotation of the shaft looking in direction "A", see dimensional drawing

SICK AT A GLANCE

SICK is one of the leading manufacturers of intelligent sensors and sensor solutions for industrial applications. A unique range of products and services creates the perfect basis for controlling processes securely and efficiently, protecting individuals from accidents and preventing damage to the environment.

We have extensive experience in a wide range of industries and understand their processes and requirements. With intelligent sensors, we can deliver exactly what our customers need. In application centers in Europe, Asia and North America, system solutions are tested and optimized in accordance with customer specifications. All this makes us a reliable supplier and development partner.

Comprehensive services complete our offering: SICK LifeTime Services provide support throughout the machine life cycle and ensure safety and productivity.

For us, that is "Sensor Intelligence."

WORLDWIDE PRESENCE:

Contacts and other locations -www.sick.com

