

AFS60I-S1PC262144

AFS/AFM60 Inox

АБСОЛЮТНЫЕ ЭНКОДЕРЫ

Информация для заказа

Тип	Артикул
AFS60I-S1PC262144	1084007

Другие варианты исполнения устройства и аксессуары → www.sick.com/AFS_AFM60_Inox

Изображения могут отличаться от оригинала

Подробные технические данные

Производительность

Количество шагов на один оборот (макс. разрешение)	262.144 (18 bit)
Допуски G	0,03° ¹⁾
Повторяющееся стандартное отклонение σ_{r}	0,002° ²⁾

¹⁾ Согласно DIN ISO 1319-1, верхний и нижний допуск зависят от условий монтажа, указанное значение приводится для симметричного расположения, то есть отклонения в верхнем и нижнем направлении одинаковы.

Интерфейсы

Интерфейс связи	SSI
Время инициализации	50 ms ¹⁾
Время построения позиции	< 1 µs
SSI	
Тип кода	Gray
Параметрируемая кодовая характеристика	CW/CCW (V/R)
Тактовая частота	2 MHz ²⁾
Set (электронная настройка)	H-активный (L = 0 - 3 V, H = $4,0$ - U_s V)
ПЧС/ПрЧС (последовательность шагов в направлении вращения)	

 $^{^{(1)}}$ После истечения этого времени можно считывать действительные положения.

Электрические данные

Вид подключения	Разъем, М12, 8-контактный, радиальная
Напряжение питания	4,5 32 V DC

¹⁾ Данный продукт является стандартным изделием, а не предохранительным устройством, в соответствии с директивой по машиностроению. Расчет на основе номинальной нагрузки компонентов, средней температуры окружающей среды 40 °C, частота применения 8760 ч./год. Все выходы из строя электрических систем рассматриваются как опасные выходы из строя. Более подробная информация приведена в документе № 8015532.

 $^{^{2)}}$ По DIN ISO 55350-13; 68,3 % измеренных величин не выходят за рамки указанного диапазона.

 $^{^{2)}}$ SSI макс. тактовая частота 2 МГц, или мин. LOW-уровень (часы+): 500 нс.

	Разъем, М12, 8-контактный
Потребляемая мощность	≤ 0,7 W (без нагрузки)
Защита от инверсии полярности	√
MTTFd: время до опасного выхода из строя	250 лет ¹⁾

¹⁾ Данный продукт является стандартным изделием, а не предохранительным устройством, в соответствии с директивой по машиностроению. Расчет на основе номинальной нагрузки компонентов, средней температуры окружающей среды 40 °C, частота применения 8760 ч./год. Все выходы из строя электрических систем рассматриваются как опасные выходы из строя. Более подробная информация приведена в документе № 8015532.

Механические данные

Механическое исполнение	Сплошной вал, Сервофланец
Диаметр вала	6 mm
Длина вала	10 mm
Bec	0,5 kg ¹⁾
Материал, вал	Нержавеющая сталь V2A
Материал, фланец	Нержавеющая сталь V2A
Материал, корпус	Нержавеющая сталь V2A
Пусковой момент	1 Ncm
Рабочий крутящий момент	0,5 Ncm
Допустимая нагрузка на вал	80 N / радиальная 40 N / осевая
Момент инерции ротора	6,2 gcm ²
Срок службы подшипника	3,0 х 10^9 оборотов
Угловое ускорение	$\leq 500.000 \text{ rad/s}^2$
Рабочая частота вращения	≤ 9.000 min ^{-1 2)}

 $^{^{1)}}$ Относится к устройствам с штепсельным разъемом.

Данные окружающей среды

эмс	По EN 61000-6-2 и EN 61000-6-3 ¹⁾
Тип защиты	IP67, со стороны вала IP67, со стороны корпуса, отвод с разъемом, глухой полый вал, сплошной вал ²⁾ IP67, кабельный отвод со стороны корпуса
Допустимая относительная влажность воздуха	90 % (Образование конденсата на оптических сканирующих элементах не допускается)
Диапазон рабочей температуры	-40 °C +100 °C ³⁾ -30 °C +100 °C ⁴⁾
Диапазон температуры при хранении	-40 °C +100 °C, без упаковки
Ударопрочность	100 g, 6 ms (согласно EN 60068-2-27)
Вибростойкость	10 g, 10 Hz 2.000 Hz (согласно EN 60068-2-6)

¹⁾ Электромагнитная совместимость в соответствии с приведенными стандартами обеспечивается при условии применения экранированных кабелей.

Классификации

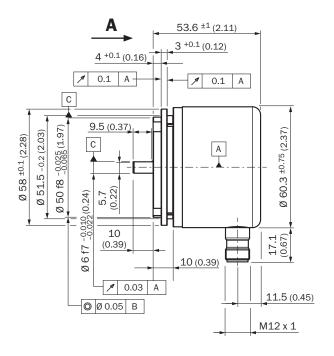
ECI@ss 5.0	27270502
------------	----------

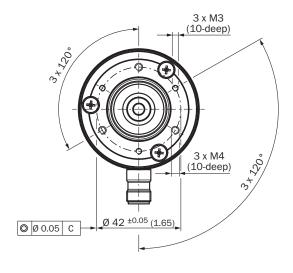
 $^{^{2)}}$ При расчёте диапазона рабочей температуры учитывать собственный нагрев 3,3 K на 1000 об/мин.

 $^{^{2)}}$ При установленном ответном штекере.

 $^{^{3)}}$ При стационарной прокладке кабеля.

 $^{^{4)}}$ При нестационарной прокладке кабеля.


AFS60I-S1PC262144 | AFS/AFM60 Inox

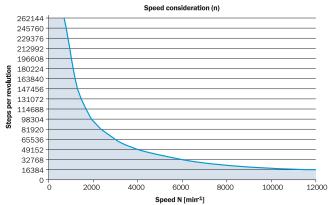

АБСОЛЮТНЫЕ ЭНКОДЕРЫ

ECI@ss 5.1.4	27270502
ECI@ss 6.0	27270590
ECI@ss 6.2	27270590
ECI@ss 7.0	27270502
ECI@ss 8.0	27270502
ECI@ss 8.1	27270502
ECI@ss 9.0	27270502
ECI@ss 10.0	27270502
ECI@ss 11.0	27270502
ETIM 5.0	EC001486
ETIM 6.0	EC001486
ETIM 7.0	EC001486
UNSPSC 16.0901	41112113

Габаритный чертеж (Размеры, мм)

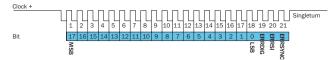
Сплошной вал, сервофланец

Схема контактов


Разъем M12, 8-контактный и кабельное соединение, кабель 8-жильный, SSI/Gray

View to the connector M12 8- pin fitted to the encoder bod

PIN, 8-pin, M12 connector	Color of wires, cable outlet	Signal	Explanation	
1	Brown	Data-	Interface signals	
2	White	Data+	Interface signals	
3	Black	CW/CCW	Counting sequence when turning	
4	Pink	SET	Electronic adjustment	
5	Yellow	Clock+	Interface signals	
6	Lilac	Clock-	Interface signals	
7	Blue	GND	Ground connection	
8	Red	+U _s	Supply voltage	
		Screen	Screen connected to housing on side of encoder. Connected to ground on side of control.	


Анализ частоты вращения

The maximum speed is also dependent on the shaft type.

Диаграммы

SSI data format singleturn

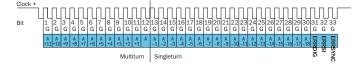
Bit 1-18: Position Bits

- · LSB: Least significant Bit
- . MSB: Most significant Bit

Bit 19-21: Error Bits

- ERRDIG: Failure message about speed. If this failure occurs during the position building procedure it will be indicated by the ERRDIG-Bit.
- · ERRSI: Light source monitoring failure.
- ERRSYNC: Contamination of the disc or scanning system. During the determination of the position, an error has occurred since the last SSI transmission. The error bit will be deleted during the next data transmission.

The evaluation of the error bits has to be realized in the PLC.

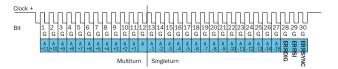

The provided error bits don't have to be used by the PLC compulsorily.

Example

If the resolution of the absolute encoder is set on 13 bits, 16 bits are provided by the encoder: 13 data bits and 3 error bits. If the PLC is not able to evaluate the error bits, the PLC has to be set on a resolution of 13 bits. Then the error bits have to be masked out by the PLC.

SSI data format multiturn

30 Bits



Bit 1–12: Position Bits multiturn

Bit 13-30: Position Bits singleturn

Bit 31-33: Error Bits

27 Bits

Bit 1-12: Position Bits multiturn

Bit 13-27: Position Bits singleturn

Bit 28-30: Error Bits

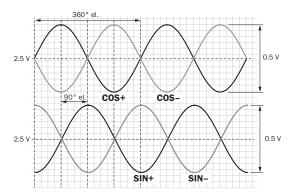
Error Bits

- ERRDIG: Failure message about speed. If this failure occurs during the position building procedure it will be indicated by the ERRDIG-Bit.
- · ERRSI: Light source monitoring failure.
- ERRSYNC: Contamination of the disc or scanning system. During the determination of the position, an error has occurred since the last SSI transmission. The error bit will be deleted during the next data transmission.

The evaluation of the error bits has to be realized in the PLC.

The provided error bits don't have to be used by the PLC compulsorily. The multiturn resolution is fixed on 12 bits.

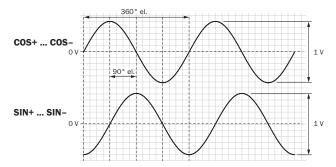
Example


If the resolution of the absolute encoder is set on 27 bits, 30 bits are provided by the encoder: 27 data bits and 3 error bits. If the PLC is not able to evaluate the error bits, the PLC has to be set on a resolution of 27 bits. Then the error bits have to be masked out by the PLC.

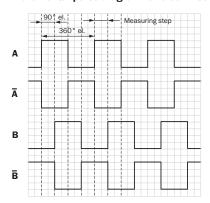
Electrical interfaces sine 0.5 V_{pp}

Power supply	Output
4.5 5.5 V	Sine 0.5 V

Signal **before** differential generation at load 120 Ω at U $_{\rm S}$ = 5 V


Signal diagram for clockwise rotation of the shaft looking in direction "A" (shaft)

Interface signals Sin, Sin, Cos, Cos	Signal before differential generation at load 120 $\boldsymbol{\Omega}$	Signal offset
Analog differential	0.5 V _{nn} ± 20 %	2.5 V ± 10 %


Signal after differential generation at load 120 Ω at U_s = 5 V

Signal diagram for clockwise rotation of the shaft looking in direction "A" (shaft)

Electrical interfaces HTL/TTL

Incremental pulse diagram for clockwise rotation of the shaft looking in direction "A", see dimensional drawing

ОБЗОР КОМПАНИИ SICK

Компания SICK – ведущий производитель интеллектуальных датчиков и комплексных решений для промышленного применения. Уникальный спектр продукции и услуг формирует идеальную основу для надежного и эффективного управления процессами, защиты людей от несчастных случаев и предотвращения нанесения вреда окружающей среде.

Мы обладаем солидным опытом в самых разных отраслях и знаем все о ваших технологических процессах и требованиях. Поэтому, благодаря интеллектуальным датчикам, мы в состоянии предоставить именно то, что нужно нашим клиентам. В центрах прикладного применения в Европе, Азии и Северной Америке системные решения тестируются и оптимизируются под нужды заказчика. Все это делает нас надежным поставщиком и партнером по разработке.

Всеобъемлющий перечень услуг придает завершенность нашему ассортименту: SICK LifeTime Services оказывает поддержку на протяжении всего жизненного цикла оборудования и гарантирует безопасность и производительность.

Вот что для нас значит термин «Sensor Intelligence».

РЯДОМ С ВАМИ В ЛЮБОЙ ТОЧКЕ МИРА:

Контактные лица и представительства → www.sick.com

