

DFS60I-S4EM00641

DFS60 Inox

INKREMENTAL-ENCODER

Bestellinformationen

Тур	Artikelnr.		
DFS60I-S4EM00641	1084885		

Weitere Geräteausführungen und Zubehör → www.sick.com/DFS60_Inox

Abbildung kann abweichen

Technische Daten im Detail

Performance

Impulse pro Umdrehung	641 ¹⁾
Messschritt	90° elektrisch/Impulse pro Umdrehung
Messschrittabweichung bei nicht binären Strichzahlen	± 0,008°
Fehlergrenzen	± 0,03°

¹⁾ Siehe maximale Drehzahlbetrachtung.

Schnittstellen

Kommunikationsschnittstelle	Inkremental
Kommunikationsschnittstelle Detail	HTL / Push pull
Anzahl der Signal Kanäle	6 Kanal
Initialisierungszeit	40 ms
Ausgabefrequenz	≤ 820 kHz
Laststrom	≤ 30 mA
Leistungsaufnahme	≤ 0,5 W (ohne Last)

Elektrische Daten

Anschlussart	Leitung, 8-adrig, radial, 5 m	
Versorgungsspannung	10 32 V	
Referenzsignal, Anzahl	1	
Referenzsignal, Lage	90°, elektrisch, logisch verknüpft mit A und B	
Verpolungsschutz	✓	
Kurzschlussfestigkeit der Ausgänge	✓ ¹⁾	
MTTF _d : Zeit bis zu gefährlichem Ausfall	300 Jahre (EN ISO 13849-1) ²⁾	

 $^{^{1)}}$ Kurzschluss gegenüber einem anderen Kanal US oder GND zulässig für maximal 30 s.

²⁾ Bei diesem Produkt handelt es sich um ein Standardprodukt und kein Sicherheitsbauteil im Sinne der Maschinenrichtlinie. Berechnung auf Basis nominaler Last der Bauteile, durchschnittlicher Umgebungstemperatur 40°C, Einsatzhäufigkeit 8760 h/a. Alle elektronischen Ausfälle werden als gefährliche Ausfälle angesehen. Nähere Informationen siehe Dokument Nr. 8015532.

Mechanische Daten

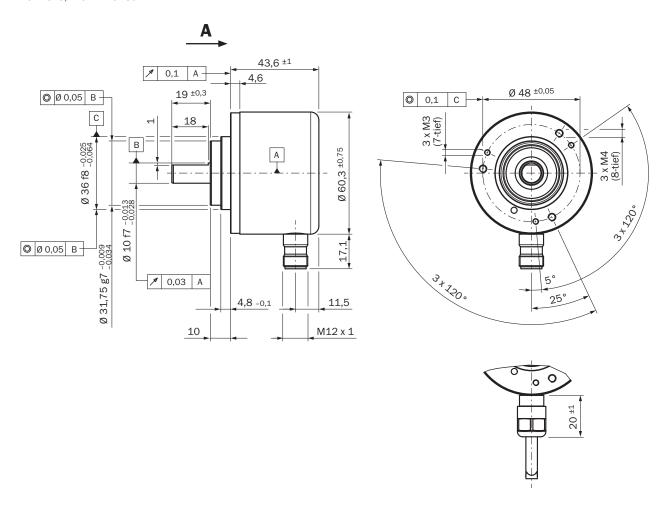
Mechanische Ausführung	Vollwelle, Klemmflansch	
Wellendurchmesser	10 mm	
Wellenlänge	19 mm	
Gewicht	+ 0,5 kg	
Material, Welle	Edelstahl V2A	
Material, Flansch	Edelstahl V2A	
Material, Gehäuse	Edelstahl V2A	
Anlaufdrehmoment	1 Ncm (+20 °C)	
Betriebsdrehmoment	0,5 Ncm (+20 °C)	
Zulässige Wellenbelastung radial/axial	80 N (radial) 40 N (axial)	
Betriebsdrehzahl	≤ 9.000 min ⁻¹ 1)	
Trägheitsmoment des Rotors	6,2 gcm ²	
Lagerlebensdauer	3,6 x 10^10 Umdrehungen	
Winkelbeschleunigung	$\leq 500.000 \text{ rad/s}^2$	

 $^{^{1)}}$ Eigenerwärmung von 3,3 K pro 1.000 min $^{-1}$ bei der Auslegung des Betriebstemperaturbereichs beachten.

Umgebungsdaten

EMV	Nach EN 61000-6-2 und EN 61000-6-4		
Schutzart	IP67, gehäuseseitig (nach IEC 60529) IP67, wellenseitig (nach IEC 60529)		
Zulässige relative Luftfeuchte	90 % (Betauung der optischen Abtastung nicht zulässig)		
Betriebstemperaturbereich	-40 °C +100 °C ¹⁾ -30 °C +100 °C ²⁾		
Lagerungstemperaturbereich	-40 °C +100 °C, ohne Verpackung		
Widerstandsfähigkeit gegenüber Schocks	100 g, 6 ms (nach EN 60068-2-27)		
Widerstandsfähigkeit gegenüber Vibration	10 g, 10 Hz 2.000 Hz (nach EN 60068-2-6)		

Klassifikationen


ECI@ss 5.0	27270501
ECI@ss 5.1.4	27270501
ECI@ss 6.0	27270590
ECI@ss 6.2	27270590
ECI@ss 7.0	27270501
ECI@ss 8.0	27270501
ECI@ss 8.1	27270501
ECI@ss 9.0	27270501
ECI@ss 10.0	27270501
ECI@ss 11.0	27270501
ETIM 5.0	EC001486
ETIM 6.0	EC001486

Bei fester Verlegung der Leitung.
Bei beweglicher Verlegung der Leitung.

ETIM 7.0	EC001486
UNSPSC 16.0901	41112113

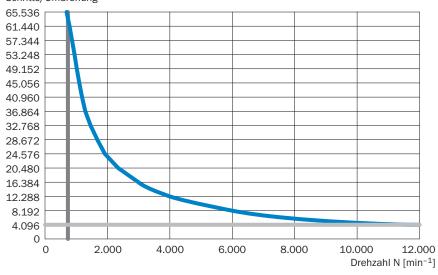
Maßzeichnung (Maße in mm)

Vollwelle, Klemmflansch

PIN-Belegung

Ansicht Gerätestecker M12, 8-polig am Encoder

Ansicht Gerätestecker M12, 12- polig am Encoder


PIN, 8-polig, M12-Stecker	PIN, 12-polig, M12-Stecker	Farbe der Adern bei Encodern mit Leitungsabgang	Signal TTL, HTL	SIN/COS 1,0 V _{ss}	Erklärung
1	7	Braun	Ā	COS-	Signalleitung
2	6	Weiß	A	COS+	Signalleitung
3	9	Schwarz	B	SIN-	Signalleitung
4	8	Rosa	В	SIN+	Signalleitung
5	4	Gelb	Z	Z	Signalleitung
6	11	Lila	Z	Z	Signalleitung
7	12	Blau	GND	GND	Masseanschluss des Encoders
8	5	Rot	+U _s	+U _s	Versorgungsspannung (Potentialfrei zum Gehäuse)
-	2	-	N.C.	N.C.	Nicht belegt
-	3	-	N.C.	N.C.	Nicht belegt
-	1	-	N.C.	N.C.	Nicht belegt
-	10 1)	-	0-SET 1)	N.C.	Nullimpuls setzen 1)
Schirm	Schirm	Schirm	Schirm	Schirm	Schirm encoderseitig mit Gehäuse verbunden.
					Steuerungsseitig mit Erde verbunden.

¹⁸ Nur bei den elektrischen Schnittstellen: M. V, W mit OSET Funktion auf PIN 10 am M12-Stecker. Der OSET-Eingang dient zum Setzen des Nullimpulses an der aktuellen Wellenposition. Wenn der OSET-Eingang l\u00e4nger eine 250 ms an 1\u00fc, g\u00e4gg wird, nachdem er zuvor f\u00fcr m\u00e4ndestens 1.000 ms offen oder an GND g\u00e4ge war, er\u00e4ntt die aktuelle Wellenstellung das Wullimpuls-Signal; 2-zugerordnet.

Drehzahlbetrachtung

Drehzahlbetrachtung

SICK AUF EINEN BLICK

SICK ist einer der führenden Hersteller von intelligenten Sensoren und Sensorlösungen für industrielle Anwendungen. Ein einzigartiges Produkt- und Dienstleistungsspektrum schafft die perfekte Basis für sicheres und effizientes Steuern von Prozessen, für den Schutz von Menschen vor Unfällen und für die Vermeidung von Umweltschäden.

Wir verfügen über umfassende Erfahrung in vielfältigen Branchen und kennen ihre Prozesse und Anforderungen. So können wir mit intelligenten Sensoren genau das liefern, was unsere Kunden brauchen. In Applikationszentren in Europa, Asien und Nordamerika werden Systemlösungen kundenspezifisch getestet und optimiert. Das alles macht uns zu einem zuverlässigen Lieferanten und Entwicklungspartner.

Umfassende Dienstleistungen runden unser Angebot ab: SICK LifeTime Services unterstützen während des gesamten Maschinenlebenszyklus und sorgen für Sicherheit und Produktivität.

Das ist für uns "Sensor Intelligence."

WELTWEIT IN IHRER NÄHE:

Ansprechpartner und weitere Standorte → www.sick.com

