

AFM60A-BBAK131072

AFS/AFM60 SSI

АБСОЛЮТНЫЕ ЭНКОДЕРЫ

Информация для заказа

Тип	Артикул
AFM60A-BBAK131072	1087448

Другие варианты исполнения устройства и аксессуары → www.sick.com/AFS_AFM60_SSI

Изображения могут отличаться от оригинала

Подробные технические данные

Производительность

Разрешение макс. (имальное количество шагов на один оборот x имальное количество оборотов)	17 bit x 12 bit (131.072 x 4.096)
Допуски G	0,03° 1)
Повторяющееся стандартное отклонение σ_{r}	0,002° ²⁾

¹⁾ Согласно DIN ISO 1319-1, верхний и нижний допуск зависят от условий монтажа, указанное значение приводится для симметричного расположения, то есть отклонения в верхнем и нижнем направлении одинаковы.

Интерфейсы

Интерфейс связи	SSI
Время инициализации	50 ms ¹⁾
Время построения позиции	< 1 µs
SSI	
Тип кода	Gray
Параметрируемая кодовая характеристика	CW/CCW (V/R) параметрируется
Тактовая частота	≤ 2 MHz ²⁾
Set (электронная настройка)	H-активный (L = 0 - 3 V, H = $4.0 - U_s V$)
ПЧС/ПрЧС (последовательность шагов в направлении вращения)	L-активный (L = 0 - 1,5 V, H = 2,0 - Us V)
Sin/Cos	
Нагрузочное сопротивление	≥ 120 Ω

 $^{^{(1)}}$ После истечения этого времени можно считывать действительные положения.

 $^{^{2)}}$ По DIN ISO 55350-13; 68,3 % измеренных величин не выходят за рамки указанного диапазона.

 $^{^{2)}}$ Минимальный, LOW-уровень (часы+): 250 нс.

Электрические данные

Вид подключения	Кабель, 8 жил, универсальный, 1,5 m ¹⁾
Напряжение питания	4,5 32 V DC
Потребляемая мощность	≤ 0,7 W (без нагрузки)
Защита от инверсии полярности	✓
MTTFd: время до опасного выхода из строя	250 лет (EN ISO 13849-1) ²⁾

¹⁾ Универсальный кабельный отвод располагается так, чтобы обеспечить прокладку без излома в радиальном или осевом направлениях.

Механические данные

Механическое исполнение	Глухой полый вал
Диаметр вала	8 mm
Bec	0,2 kg ¹⁾
Материал, вал	Нержавеющая сталь
Материал, фланец	Алюминий
Материал, корпус	Алюминиевое литье
Пусковой момент	< 0,8 Ncm ^{2) 2)}
Рабочий крутящий момент	< 0,6 Ncm ^{2) 2)}
Допустимое перемещение вала, статиче- ское	± 0,5 mm (осевая) ± 0,3 mm (радиальная)
Допустимое перемещение вала, динамическое	± 0,1 mm (осевая) ± 0,05 mm (радиальная)
Момент инерции ротора	40 gcm ²
Срок службы подшипника	3,0 х 10^9 оборотов
Угловое ускорение	+ 500.000 rad/s ²
Рабочая частота вращения	≤ 6.000 min ^{-1 3)}

 $^{^{1)}}$ Относится к устройствам с разъем.

Данные окружающей среды

По EN 61000-6-2 и EN 61000-6-3 ¹⁾
IP65, со стороны вала (согласно IEC 60529) IP67, со стороны корпуса (согласно IEC 60529) ²⁾
90 % (Образование конденсата на оптических сканирующих элементах не допускается)
-40 °C +100 °C ³⁾
-40 °C +100 °C, без упаковки
60 g, 6 ms (согласно EN 60068-2-27)
20 g, 10 Hz 2.000 Hz (согласно EN 60068-2-6)

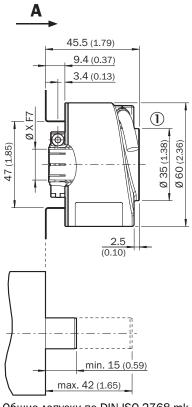
¹⁾ Электромагнитная совместимость в соответствии с приведенными стандартами обеспечивается при условии применения экранированных кабелей.

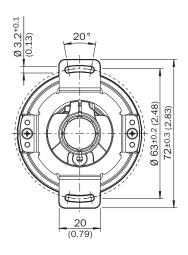
²⁾ Данный продукт является стандартным изделием, а не предохранительным устройством, в соответствии с директивой по машиностроению. Расчет на основе номинальной нагрузки компонентов, средней температуры окружающей среды 40 °С, частота применения 8760 ч./год. Все выходы из строя электрических систем рассматриваются как опасные выходы из строя. Более подробная информация приведена в документе № 8015532.

²⁾ При 20 °C.

 $^{^{3)}}$ При расчёте диапазона рабочей температуры учитывать собственный нагрев 3,3 K на 1000 об/мин.

 $^{^{2)}}$ Для устройств со Разъем: с установленным ответным штекером.

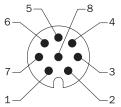

 $^{^{3)}}$ При стационарной прокладке кабеля.


Классификации

ECI@ss 5.0	27270502
ECI@ss 5.1.4	27270502
ECI@ss 6.0	27270590
ECI@ss 6.2	27270590
ECI@ss 7.0	27270502
ECI@ss 8.0	27270502
ECI@ss 8.1	27270502
ECI@ss 9.0	27270502
ECI@ss 10.0	27270502
ECI@ss 11.0	27270502
ETIM 5.0	EC001486
ETIM 6.0	EC001486
ETIM 7.0	EC001486
UNSPSC 16.0901	41112113

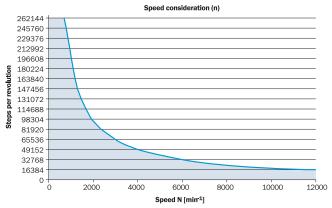
Габаритный чертеж (Размеры, мм)

Глухой полый вал, кабельный ввод



Общие допуски по DIN ISO 2768-mk

① Диаметр провода = 5,6 мм +/- 0,2 мм, радиус изгиба = 30 мм


Схема контактов

Разъем M12, 8-контактный и кабель, 8-жильный, SSI/Gray

Вид приборного штекера М12 на энкодере

Анализ частоты вращения

The maximum speed is also dependent on the shaft type.

Диаграммы

SSI data format singleturn

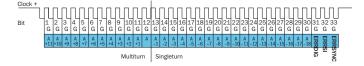
Bit 1-18: Position Bits

- · LSB: Least significant Bit
- . MSB: Most significant Bit

Bit 19-21: Error Bits

- ERRDIG: Failure message about speed. If this failure occurs during the position building procedure it will be indicated by the ERRDIG-Bit.
- · ERRSI: Light source monitoring failure.
- ERRSYNC: Contamination of the disc or scanning system. During the determination of the position, an error has occurred since the last SSI transmission. The error bit will be deleted during the next data transmission.

The evaluation of the error bits has to be realized in the PLC.

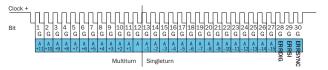

The provided error bits don't have to be used by the PLC compulsorily.

Example

If the resolution of the absolute encoder is set on 13 bits, 16 bits are provided by the encoder: 13 data bits and 3 error bits. If the PLC is not able to evaluate the error bits, the PLC has to be set on a resolution of 13 bits. Then the error bits have to be masked out by the PLC.

SSI data format multiturn

30 Bits



Bit 1–12: Position Bits multiturn

Bit 13-30: Position Bits singleturn

Bit 31-33: Error Bits

27 Bits

Bit 1-12: Position Bits multiturn

Bit 13-27: Position Bits singleturn

Bit 28-30: Error Bits

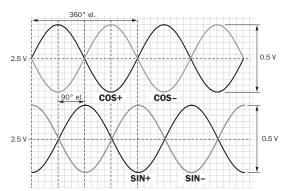
Error Bits

- ERRDIG: Failure message about speed. If this failure occurs during the position building procedure it will be indicated by the ERRDIG-Bit.
- · ERRSI: Light source monitoring failure.
- ERRSYNC: Contamination of the disc or scanning system. During the determination of the position, an error has occurred since the last SSI transmission. The error bit will be deleted during the next data transmission.

The evaluation of the error bits has to be realized in the PLC.

The provided error bits don't have to be used by the PLC compulsorily. The multiturn resolution is fixed on 12 bits.

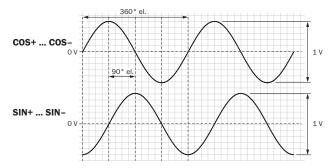
Example


If the resolution of the absolute encoder is set on 27 bits, 30 bits are provided by the encoder: 27 data bits and 3 error bits. If the PLC is not able to evaluate the error bits, the PLC has to be set on a resolution of 27 bits. Then the error bits have to be masked out by the PLC.

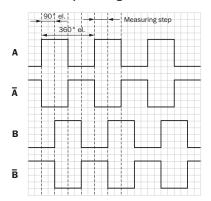
Electrical interfaces sine 0.5 $\rm V_{\rm pp}$

Power supply	Output
4.5 5.5 V	Sine 0.5 V _{pp}

Signal **before** differential generation at load 120 Ω at U $_{\rm S}$ = 5 V


Signal diagram for clockwise rotation of the shaft looking in direction "A" (shaft)

Interface signals Sin, Sin, Cos, Cos	Signal before differential generation at load 120 $\boldsymbol{\Omega}$	Signal offset
Analog differential	0.5 V _{pp} ± 20 %	2.5 V ± 10 %


Signal after differential generation at load 120 Ω at U_s = 5 V

Signal diagram for clockwise rotation of the shaft looking in direction "A" (shaft)

Electrical interfaces HTL/TTL

Incremental pulse diagram for clockwise rotation of the shaft looking in direction "A", see dimensional drawing

Рекомендуемые аксессуары

Другие варианты исполнения устройства и аксессуары → www.sick.com/AFS_AFM60_SSI

	Краткое описание	Тип	Артикул	
Разъемы и ка	Разъемы и кабели			
	Головка А: Разъем, М12, 8-контактный, прямой, А-кодированный Головка В: - Кабель: инкрементный, с экраном	STE-1208-GA01	6044892	
	Головка А: Разъем, M23, 12-контактный, прямой Головка В: - Кабель: HIPERFACE [®] , SSI, инкрементный, RS-422, с экраном	STE-2312-G	6027537	
	Головка А: Разъем, M23, 12-контактный, прямой Головка В: - Кабель: HIPERFACE [®] , SSI, инкрементный, с экраном	STE-2312-G01	2077273	
		STE-2312-GX	6028548	

ОБЗОР КОМПАНИИ SICK

Компания SICK – ведущий производитель интеллектуальных датчиков и комплексных решений для промышленного применения. Уникальный спектр продукции и услуг формирует идеальную основу для надежного и эффективного управления процессами, защиты людей от несчастных случаев и предотвращения нанесения вреда окружающей среде.

Мы обладаем солидным опытом в самых разных отраслях и знаем все о ваших технологических процессах и требованиях. Поэтому, благодаря интеллектуальным датчикам, мы в состоянии предоставить именно то, что нужно нашим клиентам. В центрах прикладного применения в Европе, Азии и Северной Америке системные решения тестируются и оптимизируются под нужды заказчика. Все это делает нас надежным поставщиком и партнером по разработке.

Всеобъемлющий перечень услуг придает завершенность нашему ассортименту: SICK LifeTime Services оказывает поддержку на протяжении всего жизненного цикла оборудования и гарантирует безопасность и производительность.

Вот что для нас значит термин «Sensor Intelligence».

РЯДОМ С ВАМИ В ЛЮБОЙ ТОЧКЕ МИРА:

Контактные лица и представительства → www.sick.com

