

DBS60I-S4EM01024

DBS60 Inox

INKREMENTAL-ENCODER

Bestellinformationen

Тур	Artikelnr.
DBS60I-S4EM01024	1098934

Weitere Geräteausführungen und Zubehör → www.sick.com/DBS60_Inox

Abbildung kann abweichen

Technische Daten im Detail

Performance

Impulse pro Umdrehung	1.024
Messschritt	90° elektrisch/Impulse pro Umdrehung
Messschrittabweichung	± 18° / Impulse pro Umdrehung
Fehlergrenzen	Messschrittabweichung x 3
Tastgrad	≤ 0,5 ± 5 %

Schnittstellen

Kommunikationsschnittstelle	Inkremental
Kommunikationsschnittstelle Detail	HTL / Push pull
Anzahl der Signal Kanäle	6 Kanal
Initialisierungszeit	< 5 ms ¹⁾
Ausgabefrequenz	≤ 300 kHz ²⁾
Laststrom	≤ 30 mA, pro Kanal
Leistungsaufnahme	≤ 1 W (ohne Last)

 $^{^{1)}}$ Nach dieser Zeit können gültige Signale gelesen werden.

Elektrische Daten

Anschlussart	Leitung, 8-adrig, radial, 5 m
Versorgungsspannung	10 27 V
Referenzsignal, Anzahl	1
Referenzsignal, Lage	90°, elektrisch, logisch verknüpft mit A und B

 $^{^{1)}}$ Kurzschluss gegenüber einem anderen Kanal US oder GND zulässig für maximal 30 s.

 $^{^{2)}}$ Bis 450 kHz auf Anfrage.

²⁾ Bei diesem Produkt handelt es sich um ein Standardprodukt und kein Sicherheitsbauteil im Sinne der Maschinenrichtlinie. Berechnung auf Basis nominaler Last der Bauteile, durchschnittlicher Umgebungstemperatur 40°C, Einsatzhäufigkeit 8760 h/a. Alle elektronischen Ausfälle werden als gefährliche Ausfälle angesehen. Nähere Informationen siehe Dokument Nr. 8015532.

Verpolungsschutz	✓
Kurzschlussfestigkeit der Ausgänge	✓ ¹⁾
MTTF _d : Zeit bis zu gefährlichem Ausfall	500 Jahre (EN ISO 13849-1) ²⁾

 $^{^{1)}}$ Kurzschluss gegenüber einem anderen Kanal US oder GND zulässig für maximal 30 s.

Mechanische Daten

Mechanische Ausführung	Vollwelle, Klemmflansch
Wellendurchmesser	10 mm
Wellenlänge	19 mm
Flanschart / Drehmomentstütze	Flansch mit 3 x M3 und 3 x M4
Gewicht	$0.5~{ m kg}^{~1)}$
Material, Welle	Edelstahl V2A
Material, Flansch	Edelstahl V2A
Material, Gehäuse	Edelstahl V2A
Material, Leitung	PVC
Material, Wellendichtring	FKM80
Material, Leitungsverschraubung	Edelstahl V2A / Messing vernickelt
Anlaufdrehmoment	1 Ncm (+20 °C)
Betriebsdrehmoment	0,9 Ncm (+20 °C)
Zulässige Wellenbelastung radial/axial	80 N (radial) $^{2)}$ 40 N (axial) $^{2)}$
Betriebsdrehzahl	≤ 6.000 min ^{-1 3)}
Trägheitsmoment des Rotors	34 gcm ²
Lagerlebensdauer	3,6 x 10 ⁹ Umdrehungen
Winkelbeschleunigung	≤ 500.000 rad/s²

 $^{^{1)}}$ Bezogen auf Encoder mit Stecker.

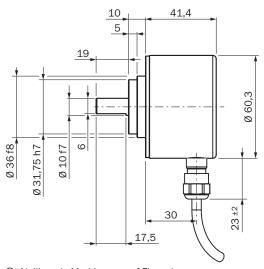
Umgebungsdaten

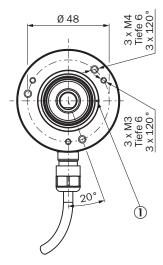
EMV	Nach EN 61000-6-2 und EN 61000-6-3
Schutzart	IP67, Leitungsanschluss (nach IEC 60529)
Zulässige relative Luftfeuchte	90 % (Betauung der optischen Abtastung nicht zulässig)
Betriebstemperaturbereich	-20 °C +85 °C
Lagerungstemperaturbereich	-40 °C +100 °C, ohne Verpackung
Widerstandsfähigkeit gegenüber Schocks	100 g, 6 ms (nach EN 60068-2-27)
Widerstandsfähigkeit gegenüber Vibration	30 g, 10 Hz 2.000 Hz (nach EN 60068-2-6)

Klassifikationen

ECI@ss 5.0	27270501
ECI@ss 5.1.4	27270501

²⁾ Bei diesem Produkt handelt es sich um ein Standardprodukt und kein Sicherheitsbauteil im Sinne der Maschinenrichtlinie. Berechnung auf Basis nominaler Last der Bauteile, durchschnittlicher Umgebungstemperatur 40°C, Einsatzhäufigkeit 8760 h/a. Alle elektronischen Ausfälle werden als gefährliche Ausfälle angesehen. Nähere Informationen siehe Dokument Nr. 8015532.

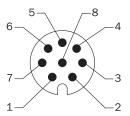

²⁾ Höhere Werte unter Einschränkung der Lagerlebensdauer möglich.


³⁾ Maximale Geschwindigkeit, welche nicht zu einer mechanischen Beschädigung des Encoders führt. Einfluss auf die Lebensdauer und die Signalgüte ist möglich. Bitte beachten Sie die maximale Ausgabefrequenz.

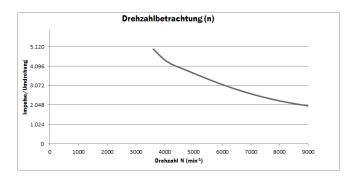
ECI@ss 6.0	27270590
ECI@ss 6.2	27270590
ECI@ss 7.0	27270501
ECI@ss 8.0	27270501
ECI@ss 8.1	27270501
ECI@ss 9.0	27270501
ECI@ss 10.0	27270501
ECI@ss 11.0	27270501
ETIM 5.0	EC001486
ETIM 6.0	EC001486
ETIM 7.0	EC001486
UNSPSC 16.0901	41112113

Maßzeichnung (Maße in mm)

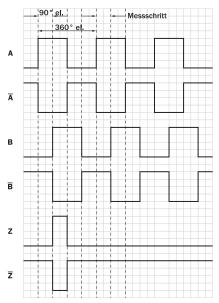
Vollwelle, Klemmflansch, Leitungsanschluss



① Nullimpuls-Markierung auf Flansch


PIN-Belegung

Ansicht Gerätestecker M12 an Leitung/Gehäuse


Farbe der Adern	Pin 8-polig bei M12	Signal TTL; HTL	Erklärung	
Braun	1	A-	Signalleitung	
Weiß	2	Α	Signalleitung	
Schwarz	3	B-	Signalleitung	
Rosa	4	В	Signalleitung	
Gelb	5	Z-	Signalleitung	
Lila	6	Z	Signalleitung	
Blau	7	GND	Masseanschluss des Encoders	
Rot	8	+Us	Versorgungsspannung	
Schirm	Schirm	Schirm	Schirm (Encoderseitig mit Gehäuse verbunden)	

Drehzahlbetrachtung

Signalausgänge

Signalausgänge für elektrische Schnittstellen TTL und HTL

Cw mit Blick auf die Encoderwelle in Richtung "A", vergleiche Maßzeichnung.

Versorgungsspannung	Ausgang
4,5 V 5,5 V	ΠL
10 V 30 V	ΠL
10 V 27 V	HTL
4,5 V 30 V	TTL/HTL universal
4,5 V 30 V	ΠL

Empfohlenes Zubehör

Weitere Geräteausführungen und Zubehör → www.sick.com/DBS60_Inox

	Kurzbeschreibung	Тур	Artikelnr.
Steckverbinde	er und Leitungen		
	Kopf A: Leitung Kopf B: offenes Leitungsende Leitung: SSI, Inkremental, HIPERFACE [®] , PUR, halogenfrei, geschirmt	LTG-2308-MWENC	6027529
\	Kopf A: Leitung Kopf B: offenes Leitungsende Leitung: SSI, Inkremental, PUR, geschirmt	LTG-2411-MW	6027530
	Kopf A: Leitung Kopf B: offenes Leitungsende Leitung: SSI, TTL, HTL, Inkremental, PUR, halogenfrei, geschirmt	LTG-2612-MW	6028516

SICK AUF EINEN BLICK

SICK ist einer der führenden Hersteller von intelligenten Sensoren und Sensorlösungen für industrielle Anwendungen. Ein einzigartiges Produkt- und Dienstleistungsspektrum schafft die perfekte Basis für sicheres und effizientes Steuern von Prozessen, für den Schutz von Menschen vor Unfällen und für die Vermeidung von Umweltschäden.

Wir verfügen über umfassende Erfahrung in vielfältigen Branchen und kennen ihre Prozesse und Anforderungen. So können wir mit intelligenten Sensoren genau das liefern, was unsere Kunden brauchen. In Applikationszentren in Europa, Asien und Nordamerika werden Systemlösungen kundenspezifisch getestet und optimiert. Das alles macht uns zu einem zuverlässigen Lieferanten und Entwicklungspartner.

Umfassende Dienstleistungen runden unser Angebot ab: SICK LifeTime Services unterstützen während des gesamten Maschinenlebenszyklus und sorgen für Sicherheit und Produktivität.

Das ist für uns "Sensor Intelligence."

WELTWEIT IN IHRER NÄHE:

Ansprechpartner und weitere Standorte → www.sick.com

